

In collaboration with

IoT Notifications: from disruption to benefit

Architectures for the future of notifications in the IoT

Supervisor(s)

Fulvio Corno

TIM Pino Castrogiovanni

Presenter

Teodoro Montanaro

Research GOAL

Investigate the intelligence component in **Internet of Things (IoT)** architectures and applications: study, define, and prototype **intelligent distributed architectures** that may extract additional value and intelligent behaviors to some significant sample problems, representative of future IoT scenarios.

The distribution and customization of notifications in the IoT domain has been

treated as an example of possible future IoT scenarios.

Date: 9th September 2018

Date: 9th September 2018

Time: 19.00

Date: 9th September 2018

Time: 19.00

Date: 9th September 2018

Time: 19.00

Date: 9th September 2018

Time: 19.00

Date: 9th September 2018

Time: 19.00

Main problem

Notifications could be disruptive:

- Wrong moment
- Wrong device on which the notification is shown
- Wrong modality (e.g., vibration instead of sound)
- Wrong person(s)
- **Repetitive** notifications
- Too many **simultaneous** notifications

Simplified version (used as a reference)

Main Research GOAL

Design and develop new **IoT architectures** to

a) enhance the effect of IoT notifications on users experience

b) allow **developers** to **effectively exploit** the **notifications** improving their services, tools and applications.

Two different approaches are possible

1. At the **distribution level**: notifications are intercepted as soon as they arrive on the IoT devices and then systems decide if, when, and how to show them.

Two different approaches are possible

1. At the **distribution level**: notifications are intercepted as soon as they arrive on the IoT devices and then systems decide if, when, and how to show them.

Solution: Smart Notification System (SNS)

Two different approaches are possible

2. At the **design level**: notifications are designed with the aim of reducing user disruption.

Two different approaches are possible

2. At the **design level**: notifications are designed with the aim of reducing user disruption.

Solution : XDN (Cross Device Notifications) framework

Smart Notification System (SNS)

SNS

Smart Notification System (SNS): a modular architecture to deal with notifications at the distribution level.

It uses **machine learning algorithms** to manage **incoming notifications** according to **context awareness** and **users habits**.

Our contributions:

- 1. Architecture design
- 2. Prototypes implementation of different architectural components

SNS: Prototypes

- 1. The **Decision Maker** contribution:
 - a) Decision maker prototype
- 2. The **Collectors** group of contributions:
 - a) IoT Collector server
 - b) Mobile Collector
 - c) SmartHome Collector
 - d) SmartCity Collector

- 3. The **Context Analysis** group of contributions
 - a) Location Estimator

SNS: Prototypes

- 1. The **Decision Maker** contribution:
 - a) Decision maker prototype
- 2. The **Collectors** group of contributions:
 - a) IoT Collector server
 - b) Mobile Collector
 - c) SmartHome Collector
 - d) SmartCity Collector

- 3. The **Context Analysis** group of contributions
 - a) Location Estimator

Objective: demonstrate that Machine Learning algorithms **can be adopted** to the IoT notifications domain

Contribution: Preliminary version of the **Decision maker module**

Context Information to be used by the ML algorithm:

User	Current activity Current location		
context			
Environment context	Current timestamp		
Available IoT devices	Owner		
informa- tion	Current status (e.g., on, off, standby)		

Notification information to be used by the ML algorithm:

	Sender	
Information about incoming notification	Receiver	
	Type of notification	
	Timestamp of receipt	
Assigned labels to outgoing notifications	Target devices	

Objective: demonstrate that Machine Learning algorithms **can be adopted** to the IoT notifications domain

Contribution: Preliminary version of the **Decision maker module**

Context Information to be used by the ML algorithm:

User	Current activity
context	Current location
Environment context	Current timestamp
Available IoT devices	Owner
informa- tion	Current status (e.g., on, off, standby)

Notification information to be used by the ML algorithm:

	Sender	
Information about incoming notification	Receiver	
	Type of notification	
	Timestamp of receipt	
Assigned labels to outgoing notifications	Target devices	

Objective: demonstrate that Machine Learning algorithms **can be adopted** to the IoT notifications domain

Contribution: Preliminary version of the **Decision maker module Tests:**

 3 different machine learning algorithms adopted over an existing dataset (MIT): Support Vector Machine, Gaussian Naïve Bayes and Decision Trees.

ML Algo- rithm	Percentage of correct predictions with unrelated data		Pe corre with	ercentage of ect predictio n related dat	ns a	Used datase Reali Minir	
	Accuracy %	Precision %	Recall %	Accuracy %	Precision %	Recall %	Synthet
Support Vector Machine	81.60	99.89	82.40	96.10	84.32	96.90	Used tools
Gaussian Naive Bayes	51.30	99.80	51.30	83.40	95.25	83.40	
Decision Trees	99.90	97.06	99.90	93.90	92.76	93.90	learn

Table 2.10 Percentage of correct predictions obtained with used algorithms

Table 2.10 Percentage of correct predictions obtained with used algorithms

SNS: Prototypes

- 1. The **Decision Maker** contribution:
 - a) Decision maker prototype

2. The **Collectors** group of contributions:

- a) IoT Collector server
- b) Mobile Collector
- c) SmartHome Collector
- d) SmartCity Collector

- 3. The **Context Analysis** group of contributions
 - a) Location Estimator

SNS: 2. Collectors

Aims:

- 1. collect real data
- 2. validate the Machine Learning approach used in the Decision Maker Prototype

SNS: 2.b Mobile Collector

Aims:

- 1. collect real data
- 2. validate the Machine Learning approach used in the Decision Maker Prototype

Representative prototype:

SNS: 2.b Mobile Collector

Objective 1: collect real user data

SNS: 2.b Mobile Collector

Objective 2: validate the Machine Learning approach used in the Decision Maker Prototype

Input features:

- Notification type (mobile, IoT)
- Generating service (e.g., Telegram)
- Ringtone mode
- Notification sender
- Sender-Receiver FAMILY relationship
- Sender-Receiver FRIEND relationship
- Sender-Receiver WORK relationship
- Date and time of receipt (day of week, day of month, month, time)
- User location (Lon/Lat)
- Activity (IN_VEHICLE, ON_BICYCLE, ON_FOOT, RUNNING, STILL, TILTING, UNKNOWN, WALKING)
- Battery level
- Battery status (charging or not charging).
- Connection type (Wifi, network, NoConn)
- Wifi SSID

Label: annoying or appreciated notification (14 users for 15 days)

User	% of appreci- ated notifica-	Naïve Bayes		J48 (Decision Trees)			
	tions over all	accuracy	precision	recall	accuracy	precision	recall
User 1	62%	75%	75%	75%	69%	69%	69%
User 2	70%	94%	94%	94%	99%	99%	99%
User 3	96%	92%	91%	92%	95%	91%	95%
User 4	63%	60%	63%	60%	68%	68%	68%
User 5	81%	92%	94%	92%	92%	91%	92%
User 6	65%	58%	56%	58%	58%	53%	58%
User 7	54%	78%	78%	78%	83%	83%	83%
User 8	72%	72%	78%	72%	70%	65%	70%
User 9	57%	67%	68%	67%	60%	59%	60%
User 10	77%	72%	75%	72%	70%	64%	70%
User 11	66%	70%	70%	70%	74%	81%	74%
User 12	61%	82%	82%	82%	91%	92%	91%
User 13	53%	78%	82%	78%	88%	88%	88%
User 14	87%	74%	76%	74%	89%	80%	89%
Mean		76%	77%	76%	79%	77%	79%
Standard leviation		11%	11%	11%	13%	13%	13%

Table 2.17 Preliminary results with real data

SNS: Prototypes

- 1. The **Decision Maker** contribution:
 - a) Decision maker prototype
- 2. The **Collectors** group of contributions:
 - a) IoT Collector server
 - b) Mobile Collector
 - c) SmartHome Collector
 - d) SmartCity Collector

- 3. The **Context Analysis** group of contributions
 - a) Location Estimator

SNS: 3. Context Analysis: location estimation

Proposal: demonstrate possibility of inferring user location without energyhungry methods (e.g., GPS)

People usually spend 85% of their time staying in a few places.

The proposed solution uses Decision Trees as Machine Learning supervised classification algorithm to establish user presence in the **two most attended meaningful places**

Model that describes the estimation process performed for each user

SNS: 3. Context Analysis: location estimation

Proposal: demonstrate possibility of inferring user location without energyhungry methods (e.g., GPS)

Tests:

- 10-fold cross validation through the Weka workbench
- **user presence in a meaningful place** was **estimated** every time a new notification is received.
- Input features: combination of Feature Classes (A-AB-ABC-ABCD-ABCDE-BC-...)

Category	Feature	Feature Class	
	Time		
Time	Month		
information	Day	— A	
	Day of the week		
1	Туре		
Notification	Generating service		
nformation	Sender-receiver relationship	— в	
	Battery level	~	
Device state	Charging state	- L	
	Ringtone mode	D	
User	Current activity	E	
information	Absolute location	1	

Results:

- Most important features (that mainly influence decision) are related to **time**
- "Current activity" (E) (i.e., the only feature that consumes extra energy), is **not necessary**
- Accuracy>75% in almost all tests

XDN Framework

XDN: Motivation

Main Problem: Overwhelming notifications

Second approach

• At the **design level**: notifications are designed with the aim of reducing user disruption

XDN: Motivation

Main Problem: Overwhelming notifications

Second approach

• At the **design level**: notifications are designed with the aim of reducing user disruption

Developers:

- define their strategies to let their software, then, influence users' behaviors with respect to notifications
- exploiting the advantages of the cross-device approach

XDN: Motivation

Main Problem: Overwhelming notifications

Second approach

• At the **design level**: notifications are designed with the aim of reducing user disruption

Developers:

- **define their strategies** to let their software, then, influence users' behaviors with respect to notifications
- exploiting the advantages of the cross-device approach

XDN: Our Proposal

Main Problem: Overwhelming notifications

Second approach

• At the **design level**: notifications are designed with the aim of reducing user disruption

XDN: Our Proposal

XDN (Cross Device Notifications), a framework to assist developers in:

- a) **personalizing notifications** to differentiate important and unimportant ones
- b) **designing, implementing, and testing cross-device notifications strategies** to inform users without causing too much disruption and involving both mobile and IoT devices.

4 main components:

- The XDN library allows (through APIs) to:
 - a) handle incoming notifications
 - b) select devices to be involved
 - c) perform actions on selected devices

tification

XDN

IoT/mobile library

4 main components:

- 2. The **XDN GUI** allows developers to **explore and evaluate different design alternatives** by providing:
 - a) an **IDE** to implement and test developed notification strategies
 - b) a **simulator** to simulate the behavior of the devices

4 main components:

3. The **XDN Runtime Environment** is run on a server to:

- accept device registration requests;
- accept update requests
- accept new notifications
- customize and dispatch the notifications

4 main components:

4. The **XDN IoT/Mobile library** to be integrated in the IoT/mobile applications to:

	XDN
ŀ	oT/mobile
	library

IoT/mobile devices

- generate notifications compatible with XDN
- send the generated notifications to the XDN runtime environment;
- receive commands from the XDN runtime environment (in JSON)

execute the received commands.

XDN: first prototype

2 components were developed:

- 1. The XDN library (API)
- 2. The XDN GUI

Tests with 12 volunteers (11 males and 1 female)

Aims:

- demonstrate the fulfillment of all the requirements
- collect a feedback about APIs and GUI

Each **user tasks**:

- modify an existing notification strategy
- develop a new notification strategy respecting some given requirements

Volunteers' main requirement:

Previous experience with JavaScript

XDN: first prototype

Results:

7 participants over 12 were able to complete all the tasks in the required time.

XDN GUI XDN Library (API) Is it **Useful**? Useful Simulator Complete Log Understandable **Editor** 2 3 0 1 4 5 1 2 0

User feedback: **survey** (from 0 to 5)

XDN framework in general

Would be useful the DEBUG function? Will you use it in your usual development? Would you use it in the future? Easy to develop proposed strategies

Table 3.6 - Final survey proposed to user

5

4

3

XDN: first prototype

Results:

Thesis Conclusions

Main Problem: Overwhelming notifications

Our proposals:

- 1. SNS that acts at the **distribution** level and fosters **ML algorithms** (autonomous system that directly influences **end-users**)
- 2. XDN that acts at the **design** level and fosters **cross-device approach** (framework for **developers**)

Main outcome:

- **Feasibility** of the proposed approaches was demonstrated
- Efficacy of the proposed solutions to enhance
 - o **user experience** with notifications
 - developers support in designing, developing and testing their own notification strategies also exploiting the cross-device approach
- Efficacy of the user-centered design methodology in notification domain

Publications during the Ph.D.

2018

- Corno, F and De Russis, L. and Marcelli, A. and Montanaro, T. . An Unsupervised and Non-Invasive Model for Predicting Network Resource Demands. In IEEE Internet of Things Journal.
- Cagliero, L. and De Russis, L. and Farinetti, L and Montanaro, T. . Improving the effectiveness of SQL learning practice: a data-driven approach. In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC).

2017

 Corno F.; De Russis L.; Montanaro T.- XDN: Cross-Device Framework for Custom Notifications Management - In: The 9th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, Lisbon (Portugal), June 26-29, 2017. (In Press)

 Corno, Fulvio; Montanaro, Teodoro; Migliore, Carmelo; Castrogiovanni, Pino -SmartBike: an IoT Crowd Sensing Platform for Monitoring City Air Pollution. In: INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal - Q2), vol. 7 n. 6. (In Press)

Publications during the Ph.D.

2016

- Corno F., De Russis L., Montanaro T. Estimate User Meaningful Places through Low-Energy Mobile Sensing. In: SMC 2016: IEEE International Conference on Systems, Man, and Cybernetics, Budapest, 9-12 October, 2016.
- Ghajargar M., Zenezini G., and Montanaro T. Home delivery services: innovations and emerging needs. In: 8th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2016, Troyes, France, 28—30 June 2016. pp. 1371-1376

2015

 Corno F.; De Russis L.; Montanaro T.; Castrogiovanni P. - IoT Meets Exhibition Areas: a Modular Architecture to Improve Proximity Interactions. In: FiCloud 2015: The 3rd International Conference on Future Internet of Things and Cloud, Roma, 24-26 August, 2015. pp. 293-300

- Corno, Fulvio; De Russis, Luigi; Montanaro, Teodoro A Context and User Aware Smart Notification System. In: IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14-16 December 2015. pp. 645-651
- Montanaro, Teodoro (2015) SWARM Joint Open Lab Politecnico Di Torino, Italy. In: CROSSROADS, vol. 22 n. 2, pp. 70-71. - ISSN 1528-4972

Summary of contributions

Main Problem: Overwhelming notifications

Our proposals:

- SNS acts at the distribution level and fosters ML algorithms (autonomous system that directly influences end-users)
 - o Decision Maker
 - Collectors
 - o Context Analysis
- 2. XDN acts at the **design** level and fosters **crossdevice approach** (framework for **developers**)
 - XDN library
 - o XDN GUI
 - o XDN Runtime Environment
 - XDN IoT/Mobile library

THANK YOU FOR YOUR ATTENTION