
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di laurea magistrale

Data fusion algorithm for a touristic based

web application. Case study: the city of

Turin

Relatore: Candidato:
Fulvio Corno Marina Ciavarra

Marzo-Aprile 2020

Contents

List of Tables iii

List of Figures v

1 Introduction 1

2 Data Fusion 3

2.1 Data fusion models . 4

2.2 Three step algorithm . 5

2.2.1 Schema Matching . 5

2.2.2 Duplicate Detection . 6

2.2.3 Data Fusion . 7

3 Case Study 9

3.1 State of the art . 9

3.1.1 Existing Data Set . 9

3.1.2 Map creation tools . 10

3.1.3 Trip planning . 12

3.2 Requirement . 14

3.2.1 Functional Requirement . 14

3.2.2 Non Functional Requirement . 23

3.3 Architecture and Design . 25

3.3.1 Technologies . 25

3.3.2 System architecture . 29

3.3.3 Data representation . 32

3.4 Development . 33

3.4.1 Homepage . 33

i

3.4.2 User login . 34

3.4.3 User Registration . 35

3.4.4 Token Validation . 37

3.4.5 Standard user features . 37

4 Proposed Solution 45

4.1 Schema Matching . 45

4.2 Duplicate Detection . 46

4.2.1 Sorting methods . 49

4.2.2 Duplicate Detection functions . 49

4.3 Data Fusion . 50

5 Result Analysis 53

5.1 Place Name Sorting with string similitude detection 54

5.2 Coordinates Sorting with euclidean distance detection 61

5.3 Place Name Sorting with combined duplicates detection 63

5.4 Coordinates Sorting with combined duplicates detection 68

6 Conclusion and Future works 73

Bibliography 75

ii

List of Tables

3.1 Describes the main actor, the precondition, and the intentions of the Reg-
istration process. In the output section are described the steps to achieve
the registration. 15

3.2 This table describes the login process in all of its parts. First, de�ne the
main actor and the preconditions. Then it explains what the user wants to
do. In the last section are reported all the subsequent actions performed
by the user and the system with the possible outcome. 16

3.3 Describes the main actor, the precondition, and the intentions when the
user wants to add a new category. In the output section are described the
steps to achieve the action and the possible outcome. 17

3.4 Describes the main actor, the precondition, and the intentions when the
user wants to add a new subcategory. In the output section are described
the steps to achieve the action and the possible outcome. 18

3.5 Describes the main actor, the precondition, and the intentions when the
user wants to add a new point of interest. In the output section are de-
scribed the steps to achieve the insertion and the possible outcome. 19

3.6 In the tour generation process are described the main actor, the precondi-
tion, and the intentions of the user. In the output section are described the
steps to achieve the action and the possible outcome. 20

3.7 Describes the main actor, the precondition, and the intentions when the
user wants to review a category. In this scenario it can validate or invalidate
a category, as well as do nothing. In the output section are described the
steps to achieve the validation of a category. The process to invalidate a
category is exactly the same, the only di�erence is the button clicked in the
�fth step. The same process can be executed as well for the subcategories. 21

3.8 Describes the main actor, the precondition, and the intentions when the
system administrator wants to review points of interest inserted by standard
users. In this scenario it can execute the data fusion or not. In the output
section are described in general the steps to achieve the data fusion. . . . 22

3.9 Describes the usability requirement of the application. 23

iii

3.10 Describes the maintainability requirement of the application. 23

3.11 Describes the performance requirement of the application. 23

3.12 Describes the platform compatibility requirement that also satis�es the
portability one. 24

3.13 Describes the reliability requirement of the application. 24

3.14 Describes the robustness requirement of the application. 24

3.15 Describes the operability requirement of the application. 24

3.16 Describes the security requirement of the application. 25

5.1 Confusion Matrix . 53

iv

List of Figures

2.1 Comparison between blocking and windowing methods in the selection of
data in two consecutive steps. In blue are represented the data selected in
the �rst step, the second one is shown in orange. The �gure on the left
represents the blocking method, where each step considers a di�erent set
of data. On the right, is displayed the windowing method where the data
selected by the two steps are overlapped. 7

3.1 Examples of detail level comparison between OpenStreetMap and Google
maps in two di�erent locations. Figure (a) and (b) is a capture of the area
near the Po river in Turin. Figure (c) and (d) opposes the detail level in a
not touristic area in the south of Italy. 11

3.2 The use case describes the access process to the system, both for authorized
and standard users. The detailed description is reported in the table 3.1
and 3.2 . 15

3.3 The use case describes all the actions that a standard user can execute in
the system. All the actions require that the user is logged in and is of type
standard. The detailed description is reported in the table 3.3, 3.4, 3.5 and
3.6 . 22

3.4 Model-View-Controller design pattern. 26

3.5 Interaction between store, action, and reducer in React Redux. 26

3.6 Client-server architecture of the project. It shows the connection between
the components and also includes the server connection with the Post-
greSQL database and the OpenTripPlanner service. Each client has its
instance of the OpenStreetMap. It shows the interaction between the ap-
plication and the data fusion algorithm . 29

3.7 High-level representation of the data fusion algorithm. It shows the three
di�erent modules of the algorithm and the interactions between them. . . 30

3.8 React+Redux architecture details with highlights on the components and
the relations between them. 31

3.9 Schema of the project database. 32

v

3.10 App homepage . 33

3.11 Sequence diagram for points of interest retrieval. 34

3.12 Sequence diagram of the login process. The �rst lifeline on the left it the
one related to the client. The others are all calls within the server. 35

3.13 App login page . 35

3.14 App registration page . 36

3.15 Sequence diagram of the registration process. 36

3.16 Sequence diagram of the authentication process. 37

3.17 Add new Category tab of the application. The user has already selected the
subcategory �eld, and the system has rendered the possible parent category
between choose. 38

3.18 Sequence diagram of the category insertion process. 39

3.19 Sequence diagram of the process for get the categories already validated by
the authorized user. 39

3.20 Add new point of interest tab of the application. The user has already
selected the point on the map and the Outdoor category,and inserted the
place name. The subcategory rendered by the system are the one related
to the Outdoorcategory already selected. 40

3.21 Sequence diagram of the point of interest insertion process. 40

3.22 Sequence diagram of subcategory request process. 41

3.23 Creates point of interest tab of the application. The user has already
selected the Buildings category and the system renders the subcategory
related to it. 41

3.24 Sequence diagram of the tour creation process. 42

3.25 Creates point of interest tab of the application after the tour creation. The
user navigates on the map and points on the bus line D20. 43

5.1 Precision of the Ratcli�-Obershelp similitude metrics. 55

5.2 Recall of the Ratcli�-Obershelp similitude metrics. 55

5.3 F-Score of the Ratcli�-Obershelp similitude metrics. 56

5.4 Precision of the Jaro-Winkler similitude metrics. 57

5.5 Recall of the Jaro-Winkler similitude metrics. 57

5.6 F-Score of the Jaro-Winkler similitude metrics. 58

5.7 Precision of the Levenshtein similitude metrics. 58

5.8 Recall of the Levenshtein similitude metrics. 59

5.9 F-Score of the Levenshtein similitude metrics. 59

vi

5.10 Precision of the Jaccard similitude metrics. 60

5.11 Recall of the Jaccard similitude metrics. 60

5.12 F-Score of the Jaccard similitude metrics. 61

5.13 Precision of the Euclidean Distance. 62

5.14 Recall of the Euclidean Distance. 62

5.15 F-Score of the Euclidean Distance. 63

5.16 F-Score with threshold of 0.0001 Jaccard similarity metric. 64

5.17 F-Score with a �xed threshold Φc of 0.001 Jaccard similarity metric. . . . 64

5.18 F-Score with a �xed threshold Φc of 0.01 Jaccard similarity metric. 65

5.19 F-Score with a �xed threshold Φc of 0.0001 Jaro-Winkler similarity metric. 65

5.20 F-Score with a �xed threshold Φc of 0.001 Jaro-Winkler similarity metric. 65

5.21 F-Score with a �xed threshold Φc of 0.01 Jaro-Winkler similarity metric. . 66

5.22 F-Score with a �xed threshold Φc of 0.0001 Ratcli�-Obershelp similarity
metric. 66

5.23 F-Score with a �xed threshold Φc of 0.001 Ratcli�-Obershelp similarity
metric. 67

5.24 F-Score with a �xed threshold Φc of 0.01 Ratcli�-Obershelp similarity metric. 67

5.25 F-Score with a �xed threshold Φc of 0.0001 Jaccard similarity metric. . . . 68

5.26 F-Score with a �xed threshold Φc of 0.001 Jaccard similarity metric. . . . 68

5.27 F-Score with a �xed threshold Φc of 0.01 Jaccard similarity metric. 69

5.28 F-Score with a �xed threshold Φc of 0.0001 Jaro-Winkler similarity metric. 69

5.29 F-Score with a �xed threshold Φc of 0.001 Jaro-Winkler similarity metric. 70

5.30 F-Score with a �xed threshold Φc of 0.01 Jaro-Winkler similarity metric. . 70

5.31 F-Score with a �xed threshold Φc of 0.0001 Ratcli�-Obershelp similarity
metric. 71

5.32 F-Score with a �xed threshold Φc of 0.001 Ratcli�-Obershelp similarity
metric. 71

5.33 F-Score with a �xed threshold Φc of 0.01 Ratcli�-Obershelp similarity metric. 71

vii

Abstract

In this decade, data represent a valuable source for all the companies, not only the IT
related one. Data quality represents a critical problem when data from di�erent sources
are combined. The thesis goal is to develop a data fusion algorithm to create, extend,
and validate a database containing points of touristic interest for the city of Turin. This
database will be the basis of a web application for the creation of a customized tour based
on the categorization of point of touristic interest. The algorithm will integrate three
di�erent datasets: open data of Turin city hall, Wikidata query results, and data inserted
by users through the web application. The data fusion algorithm is divided into three
steps, each one addressing the inconsistency problem at one level: schema, tuple, and
value.

Chapter 1

Introduction

According to Istat, in 2018, 428.8 million tourists came to Italy, reaching a new all-time
high [44]. Italy, with its landscape and its history, is in the top �ve countries visited
worldwide. Knowing new cultures and places are the driver elements into a new trip
choice. The internet is the primary source of information both for the journey organization
and the place to visit. These lead to the development of a trip-planning web application
that, using both existing datasets and user-inserted data. Database plays a vital role in
IT and economic base industries, the quality of data stored in its highly in�uence the
system that relies on data to conduct business. Using di�erent data sources increases the
data quality but can lead to inconsistency. Data fusion tries to overcome this limitation
to achieve a complete e consistent dataset containing quality data compared to a single
source of information.

The objective of the thesis is to design and implement a data fusion algorithm to obtain,
extend, and validate a database containing notable touristic places related to the city of
Turin. This database is the foundation of a ReactJs web application that creates touristic
tours based on the user location and the categories selected by it. In the application
contest, points of touristic interest are described by name, latitude, longitude, and are
categorized using six categories containing di�erent subcategories. The categories selected
for the project are six: building, museum, artistic movement, outdoor space, related �gure,
and activity and leisure. The building category includes subcategories that specify the use
of it. Whether the point of interest re�ects an architectural style, the artistic movement
category should be selected. The related �gure category includes famous people who
lived in or built the point of interest. The other three categories are straightforward and
do not need additional explanation. To retrieve these points of touristic interest several
sources are used, the schema heterogeneity and the need to automatically validate the
data inserted by the users has led to the need to adopt data fusion techniques.

Chapter 2 introduces data fusion in general and explains the di�erent classi�cation of
data fusion algorithms. In this chapter are described the three steps data fusion algorithm
widely used in research. The case study of the touristic web application for the city of
Turin is presented in chapter 3. Here are reported the state of the art in the touristic
application �eld, then the requirements, the system architecture, and the development of

1

Introduction

the web application. Chapter 4 includes the speci�cation of the data fusion algorithm
created for the project. It explains in detail the three phases of the algorithm as well as
the datasets used. Some pseudocode is inserted to explain the algorithm better and the
solution adopted. The analysis of the algorithm, the evaluation metrics, and the result
are presented in chapter 5, while chapter 6 contains conclusions and future works.

2

Chapter 2

Data Fusion

Data fusion is a technique allowing the integration of heterogeneous data coming from
di�erent sources in order to achieve a higher level of data quality. The latter can be
expressed both qualitatively and quantitatively, depending on their usage. In the data
fusion domain, high-quality data are the ones that represent more similarly a real-world
entity. Regarding instead the algorithm quality, four measurements are used to establish
its quality: accuracy, precision, recall, and F-score. The accuracy is the ratio between the
correct prediction over all the observations; it is a proper measurement with symmetric
datasets, where the number of true positives and false negatives are balanced. The preci-
sion is the ratio between the correctly predicted positive over the total positive predicted.
The recall is the ratio between the correctly predicted positive over the whole observation.
The F-score represents a weighted accuracy that can be used with unbalances datasets
and is a weighted average of precision and recall.

Data fusion was initially created for military-related problems, and it is not a coincidence
that the most widely researched and documented area is the multisensor one, indeed [1].
Nonetheless its origin this technique has acquired, over time, increasing emphasis in the
information integration �eld. The growing of the information available on the internet and
their easy access has encouraged interest in data fusion, based on the heterogeneity of data
contained and in their representation. For more than 30 years, researches go on this �eld
solving the problem of missing and uncertain data as well as schema heterogeneity, but
usually, the semantic aspect of data is ignored. The �rst misunderstanding in approaching
data fusion is to assume that it is a synonym of data integration. Both techniques deal
with heterogeneous data, but data integration takes speci�c pieces of information from
trusted sourced without merge together all the information as done by the data fusion.

The �rst step before explaining the di�erent data fusion models is to focus on the schema
used to create the algorithm. It is composed of three steps:

Chose source data is the crucial step in the process to understand the problem that we
are dealing with and choose the amount of data to use and the type that will add
value to the �nal dataset. This step is essential because data that apparently may

3

Data Fusion

seem relevant for the scope after in-depth investigation are just useless and source
of misleading information.

Follow a rigorous model in order to deal with the di�erent degrees of uncertainty in-
herent in data fusion. The best strategy is to use the divide and conquer one to
apply di�erent techniques for each subproblem but not the only one. This phase
is the most general one where the optimization can be executed and is the most
documented one.

Create a trustworthy model based on the previous step can also be feasible in terms
of cost, time, and resources.

2.1 Data fusion models

Data fusion can be applied in di�erent areas and at di�erent levels, to merge data coming
from sensors, IoTs, or general hardware devices or can be applied to text-based data. In
order to give a general overview of data fusion techniques, the classi�cation can follow the
criteria presented in [3]:

Relation between data proposed by Duran-Whyte [2] divides the data into redundant,
complementary, and cooperative. Complementary data provides complete informa-
tion by put together two di�erent sources that alone do not have any meaning for
the scope. Redundant data are the ones that are precisely equal and can be used
to ensure faith but do not add any additional information to the dataset. The last
category is the most complex because this type of data is the core of the data fusion
process since when they are combined, returns a more complex and complete data.

I/O data nature also known as Dasarathy's classi�cation [4], classify the data fusion
techniques based on the pair of input and output data that interact with the al-
gorithm. The data pairs are divided into �ve types: raw data-in and out coming
directly from the sensors, sensor data-in processed to extract feature, feature elabo-
rated more in detail, feature inserted to extract decisions, and the last one is decision
fusion.

Abstraction level described in [5] is composed of four levels: signal for the data sensors,
pixel for image processing, characteristic are metadata extracted from the previous
levels and symbol level where the information is presented in its higher form.

JDL data fusion classi�cation [6] is divided into �ve processing levels: source pre-
processing, object re�nement, situation assessment, impact assessment, and process
re�nement. The �rst process extracts the data from the source and executes a low-
level fusion on raw data. Then these data are cleaned up using di�erent techniques
and stored in a uniform data structure. The situation assessment is similar to the
previous process, but it is focused on the relationship between the data. Inside the
fusion domain, the process executed so far is evaluated, and all the risks are taken

4

2.2 � Three step algorithm

into account. The last process is exterior to the fusion domain and concerns the
system resource management.

Architecture type where the data fusion is performed. In a centralized architecture,
all the computation is focused on the central processor. The drawbacks of this
approach are time and bandwidth cost used for communication between input data
and processor. In a distributed architecture, each information source preprocessed
its data individually and then sent the data to a central node only for the fusion
step. This approach overcomes the centralize architecture limitation, but each node
as only a partial view of all the data that may lead to error. The decentralized
architecture works with a network of peers, each one performs all the tasks of a
centralized architecture, but it works with the data coming from its pears. This
method is not scalable due to the communication cost. The last model combines
the distributed and decentralized one hierarchically.

Apart from the model used in the data fusion algorithm, there are several �elds where this
technique can be applied. In the �eld of Linked Open Data, it exists a framework called
Linked Data Integration Framework (LDIF)[16] that automatically integrate linked data.
In particular, the Slieve module includes a module for data fusion and quality assessment
[15]. It uses the metadata of named graphs to evaluate data quality. Slieve is high
con�gurable, allowing the user to select the metadata and the fusion function to use using
an XML �le. In [14] is presented a speci�c resolution strategy based on the Bayesian
model. Also [13] presents an algorithm based on voting and probabilistic models.

2.2 Three step algorithm

Data fusion, in general, address the inconsistency problem at three di�erent levels: schema,
tuple, and values. These problems were addressed separately in the literature, and only
in some cases, the researches are focused on the whole data fusion process. Following the
literature [17], data fusion algorithms can be divided into three di�erent phases, where
each one handles a level separately.

2.2.1 Schema Matching

Schema matching handles the problem of data heterogeneity at the schema level, and it
can be divided again into two sub-section: schema matching and data transformation.
The �rst step is closely related to the data source that will be used because it is the only
part that must be context-aware. The schema of the di�erent data source are compared
to understand the relations between them, in this case, the algorithm search for duplicate
in the column declaration. The next decision is about the schema to use for the rest
of the algorithm. There are three possibilities: use a standard schema, use a new one
explicitly created based on the context, or choose one between the data sources. The
�rst possibility is the more general one, but it can generate problems with multiple null

5

Data Fusion

values in the next algorithm phases and also discard important feature context related.
The other two choices are highly related to the context, and for this reason, they bene�t
from the optimization of a specialized data fusion algorithm.

The data transformation is where all the data coming from di�erent sources are retrieved
and stored under the unique schema selected previously. In this phase, the algorithm also
performs the �rst data transformation since there is not only one standard representation
of the data. Data can have di�erent formats as linked data, CSV �les, XML �les, or they
can use UTF-8 or ASCII standards, to mention a few. This stage of the algorithm can be
fully automated, and user interaction is required only for the input insertion because the
user needs to choose the data sources and the schema to use.

In literature, there are di�erent studies about schema matching prototype: MOMIS [7],
DIKE [8], CUPID [9] are schema-based and use real-world schema to perform their evalu-
ation. In [10] di�erent type of schema matching algorithm are compared, they are divided
based on the level where they act (schema, instance, element, or structure) and on the
type of matcher they use (language or constraint-based).

2.2.2 Duplicate Detection

Data duplication has as its goals to �nd the instance in the dataset that represents the
same real-data object. Even if there are di�erent types of approaches to the problem,
all of them are based on a fundamental principle: compare entries pairs using similitude
measurement and acceptance threshold [11]. Although the theory behind this phase is
simple, due to the amount of data to process and the bound in terms of time, cost and
resource data fusion is one of the more researched �elds in the data mining for the last
�fty years. The duplicate detection problem is addressed in [18] using a sorted method
neighbor where the data are �rst sorted and then compared in smaller sets. The approach
presented in [19] is based on the [18], but it uses an algorithm of Duplicate Count Strategy
instead. In [20] is proposed a solution using a priority queue of duplicate records where
each time a duplicate is found, it is put at the head of the queue.

Data duplication has to deal with two main problems: multiple representations that have
only slight di�erences and the possibility that it must compare all the records using a
brute force algorithm. The duplicate data can be of two types: exact matching that
can be considered as redundant data and near matching that can contain spelling errors,
abbreviations, or missing values. The performance of the data duplication algorithm can
be measured in terms of e�ectiveness and e�ciency. The e�ectiveness is linked to the
similarity measurement, and the threshold used because this is the core of the algorithm.
The e�ciency is related mostly to the kind of algorithm used to check the similarity.
There are four parameters used to evaluate the algorithm: time, cost space, and accuracy.

In the literature, there are three di�erent techniques to create an algorithm for duplicate
detection: knowledge-based, probabilistic, and empirical [12]. The knowledge-based re-
quires more human interaction than the other because it requires knowledge and training
to perform the decision. The probabilistic method is based on statistical methods, and it
extracts the knowledge from the data using a bottom-up approach. This means that the

6

2.2 � Three step algorithm

algorithm does not have knowledge about the �eld it is working with, and in this way,
it can be more generic. The empirical technique is based on the observation of previous
researches to derive a new algorithm that has to be tested and evaluated in order to vali-
date it. The algorithm following the empirical technique is composed of two steps: sorting
and comparison. The data are sorted because choosing proper sorting-key increases the
possibility of having duplicates in the same neighborhood. The comparison of the records
can follow two di�erent methods to decrease the comparison number as shown in �gure
2.1:

Blocking : the data are partitioned in �xed blocks, and the search for duplicates is
executed only between the data within the block.

Windowing : only the data in the window are compared to detect duplicates, but when
the search is completed, the windows slice of one entry and the search is executed
again.

Figure 2.1: Comparison between blocking and windowing methods in the selection of data in two con-
secutive steps. In blue are represented the data selected in the �rst step, the second one is
shown in orange. The �gure on the left represents the blocking method, where each step
considers a di�erent set of data. On the right, is displayed the windowing method where
the data selected by the two steps are overlapped.

2.2.3 Data Fusion

The data fusion goal is to combine the di�erent representations of the same real-world
object found in the previous steps to have a single representation of that entity. This step
deals with two di�erent types of con�icts: uncertainty is the con�ict between a non-null
representation and one or more null ones, contradiction is the con�ict between two or more
non-null representation. These con�icts may have been generated by the integration or
may already exist in the dataset. Before entering the details of the fusion procedure and
function, it is necessary to present the macro-categories for the data fusion strategy:

Con�ict-ignore strategy does not make any decision on the con�icting data and sents
it back to the user that has to solve the con�ict using the PassItOn strategy. Some-
times this strategy is not even aware of the con�ict. Pegasus [22] allows the user
to access heterogeneous distributed data. It detects potential duplicates and maps

7

Data Fusion

them in a mapping table that is reviewed by the system administrator who sent back
to the user the view without con�icts. Nimble [21] is the �rst integration system to
use the XML data model, and it relies on an expert user to solve the con�icts. The
Carnot system [23] allows the integration between structured and non-structured
data using a global schema and an automatic transaction between them. It uses
experts to execute the mapping and passes all the duplicates to the user. The In-
foSleuth project [24] is the successor of the last one, and it allows to add or remove
data sources at run time.

Con�ict-avoid strategy applies a unique decision for all the con�ict in general using
the TrustYourFriend strategy. The TSIMMIS [25] and the SIMS [26] system are two
mediator-wrapper systems that recognize the duplication and solve them by taking
the data from a speci�c source previously selected. The �rst one uses an expert
or machine learning method as mediator. Infomix [27] also is a mediator-wrapper
system, but it can answer general queries incorporating di�erent data models like
XML, HTML, relational database.

Con�ict-resolve strategy solves the con�ict using two di�erent strategies by deciding
which data to keep or mediating and create a new value that is representative of the
data considered. This resolution strategy applies relational operation and aggregate
function to the data to solve the con�icts. Multibase [28] implements a solution
using outer join operation and basic aggregation function to fuse data. In the
same way, HumMer [29] implements the fusion through grouping and aggregation.
Hermes [30] integrates data sources and reasoning facilities combined by an expert
user acting as a mediator. In the con�ict-resolution case, two di�erent strategies
can be applied: CryInTheWolves, which chooses the most used data in the dataset
and MeetInTheMiddle that creates a new value that represents the con�ict ones.

In con�ict resolution, several functions can be applied to decide which data between the
duplicate to keep in the �nal representation. In the deciding strategy, the algorithm can
decide to take a value based on its insertion on the dataset, its last update, the number
of most frequent appearances, and on the ownership to a speci�c data set. It can also
decide to take the �rst non-null value found. When embracing the mediation strategy, all
the aggregation function can be used to create new representative data.

8

Chapter 3

Case Study

In modern society, people travel all around the world for many di�erent reasons but
knowing new cultures and places is the driver element into a new trip choice. Nowadays,
the internet is the primary source of information both for the journey organization and
the place to visit. These lead to the development of a trip-planning web application that,
using both existing datasets and user-inserted places, generates a touristic tour based on
speci�c categories inserted by the user on the GUI. The application is speci�cally focused
on the city of Turin.

In this chapter is described the touristic-application developed. In section 3.1 are described
the scienti�c and technological progress in data collection, map creation, and trip planning.
Functional and non functional requirements are reported in section 3.2, followed by the
description of the system architecture in section 3.3 and its development in the last section
3.4.

3.1 State of the art

This project a�ects many specialists and large areas of the IT world. The primary concern
is if there are existing datasets that �t the project needs or, in the contrary case, how
to collect data from the users. Subsection 3.1.1 de�nes what a Dataset is and describes
di�erent existing datasets, which can be used. There is also a discussion on why they don't
�t the project goal. When the problem of data is solved, the development of the touristic
tour turned out, subsection 3.1.2 analyze the existing tools for map creation with their
advantage and disadvantage. Subsection 3.1.3, instead analyzes the existing software for
trip planning development and the existing applications for trip planning.

3.1.1 Existing Data Set

Before list the dataset related to touristic information found during the researches, it is
essential to give the dataset de�nition. Dataset is a collection of information composed

9

Case Study

of separate elements organized in block structures that can be manipulated as a unit. It
exists many di�erent types of dataset, di�erentiated on the data storage and structure.

Di�erent website maintains various dataset that classify data from all kinds. One need
only think about government entities as the European Union, dates September 2019, it
provides 13879 up-to-date datasets [40]. Google created in 2008 a public data explorer
allowing the user to search and examine large third-part datasets in the form of graphs,
plots, or on map [38]. Torino city hall maintains 1750 datasets divided into: people and
society, public administration, economics and �nance, cities, environment, education and
culture, transportation, tourism, health, elections, science and technology, agriculture and
�shing, and energy [39]. Between all of them, only three �t in the project scope: tourism,
education and culture, and environment. Into these categories were selected seven datasets
that �t in the application scope: libraries, historical places, theaters, museums, market,
themed market, and green areas.

Even if the AperTO dataset covers di�erent domains in the application scope, many of
the most important sites of cultural interest are not considered here, to overcome this lim-
itation, the largest free online encyclopedia can be used. Wikipedia contains two di�erent
datasets: DBpedia and WikiData. DBpedia extracts information from Wikipedia pages
and publishes them as Linked Open Data [43]. WikiData is a secondary database that
collects structured data [42], it gathers data and their sources imposing a very structured
schema to ensure easy reuse of the data. Both of them include data concerning the city of
Turin, precisely 31 DBpedia entries and 1294 WikiData ones, and after detailed research,
only the WikiData data were selected for the application.

Given that, the two dataset were not exhaustive, to have the data needed for the scope, the
next step was to collect the categorized data from the most potent source of information:
the users.

3.1.2 Map creation tools

Software technologies are always under evolution, although the tech giant are the driving
force of this industry, they are not the undisputed market leaders. When a developer has
to insert a map with some functionality, the �rst API considered is the Google Maps one.

Google Maps is a project born in 2005 that allows map visualization, but the services
built on top of it is its strength. It allows to research restaurant, monument, bus station,
airport and also to calculate the road routs between two or more points. Street view and
tra�c information are two additional services integrated with it [31]. The API renders
four basic map types:

Roadmap is the default road view.

Satellite includes the Google Earth images.

Hybrid is a combination of the previous two.

Terrain displays a physical map based on terrain information.

10

3.1 � State of the art

Both the element and the style of this basic map can be customized. The API supports
the overlay map type which is designed to work on top of an existing map type, and it
adds a new layer showing additional information to the user. There is also the possibility
of creating a custom map type.

At its �rst release, Google Maps was a free service but over the years have been applied
overly stringent rules. Nowadays, to use the API, the developer must include an API key,
enable billing on all of its projects, and it has a maximum of 500 requests per second [32].
Moreover, the developer has no control over the policy applied by Google. On the market,
there are various alternatives. Apple MapKit is an Apple library that has higher limits for
map views and service calls, but it is still a beta version [45]. Bing Maps [46]: is similar
to Google one, but Microsoft owns it. It has 125000 free calls per year. These three API
are not for free, and they have a closed approach to data collection and distribution.

(a) Turin OSM map. (b) Turin Google map.

(c) South of Italy OSM map. (d) South of Italy Google map.

Figure 3.1: Examples of detail level comparison between OpenStreetMap and Google maps in two dif-
ferent locations. Figure (a) and (b) is a capture of the area near the Po river in Turin.
Figure (c) and (d) opposes the detail level in a not touristic area in the south of Italy.

OpenStreetMap (OSM for conciseness) instead adopts an open philosophy: it is a free and
editable map released under the open-content license. Their goal is to create a database
which can be used by third parties. Nowadays, OSM maps are used both for humanitarian
aid and scienti�c research. The OSM project collects data using a collaborative model

11

Case Study

similar to the Wikipedia one. It creates a free editable map of the world entirely updated
by the volunteers. The updates are immediately visible to all the users, and the user and
the OSM community own them. OSM also uses satellite images and government data for
map production[34]. Quality and granularity, as well as equal coverage, is guaranteed by
the OSM community. Google instead puts more e�ort and resources into areas that are
most pro�table to sell. The �gure 3.1 shows well this concept comparing the Google and
OMS maps in two di�erent places: Turin and a small town in the south of Italy. Even
if the Google map in Turin is detailed, this map is still less updated that the OSM one.
For example, in �gure 3.1 (a) we can see the real shape of Vittorio Veneto square, that
is simply represented as a rectangle in the Google map. OSM maps can be used both
directly for their server or through an open-source Javascript library. All the features of
Google Maps are supported in OpenStreetMap and in some cases, they are even better.

3.1.3 Trip planning

Over the last decades, various Trip Planner systems have been developed, and researches
are still ongoing. A transit trip planner is a particular engine that assists users in planning
their trip inserting origin and destination, departure or arrival time, and the transport
means. Most systems are based on static schedules that don't take into consideration the
tra�c congestion and so the possible delay. There are also real-time transit trip planners
includes Vehicle Mounted Unit (VMU), on the bus. This system, based on the GPS
mounted in the vehicle, provides real-time location information which is used to track the
movement and, accordingly, the arrival time.

In 1999, the �rst multimodal itinerary planner was developed to provide the tourist with
schedules of public transports. The Itinerary Planner was developed to help travelers �nd a
suitable itinerary by generating alternative travel plans for a single Origin-Destination pair
with time and mode of travel constraints. It didn't consider the real-time scenario but the
unique one to start the Multimodal Trip Planner with constraints. In 2010 was introduced
the Park-n-Ride mode support for multimodal trip planner. It considers parking lots near
public transportation access points. During the years, di�erent optimization algorithms
have been created by inserting data caching and applying more strict search criteria. For
transit route planners to work, transit schedule data must always be kept up to date.
To facilitate data exchange and interoperability, in 2006 was developed a standard data
formats have emerged called General Transit Feed Speci�cation or GTFS [36]. The most
advanced trip planner until today is Google Transit [35].

There are another two competitors with similar performance and free: OpenTripPlanner
and Navitia. OpenTripPlanner or OTP is an open-source and multi-platform multimodal
trip planner. It has a monolithic architecture that makes it easy to con�gure and run,
and It uses the GTFS standard. Real-data informations are available as a continuous
stream from the GTFS-RT. Navitia is an open-source framework provided as a hosted
open service preloaded with open data from several regions. It has a modular system
more suitable for high-throughput service and uses an extended transit data similar to
GTFS but incompatible with it. The integration with real-time data is slow due to the
protocol applied [37].

12

3.1 � State of the art

Journey planners use an in-memory representation of the transportation network and
timetable to enable an e�cient and rapid search and routing algorithms to search the
transport network graph. The routing can use Dijkstra's algorithm when it is independent
of time. Users can create a custom itinerary by using di�erent websites that have a pre-
built database of points of interest.

Google travel put together �ights, and hotels deal with information on the trip desti-
nation. In the explore section, the user gets an overview of the main activities in
the selected city. Then it sees the popular things to do and some prede�ned Day
plans based on actual travelers' visits.

Itineree helps the trip planning. It has a section called Do & See This Day, where the
user can see the top ten places for TripAdvisor or the most recommended attractions.
It can also search for places inserting a keyword, but for this feature, the website
uses an external resource like Google and TripAdvisor. Besides, it also includes
�ight, hotel, and restaurant facilities.

Sygic Travel Maps shows attractions, hotels, restaurants and shops directly on the map
using a proprietary database of touristic attractions. There are two other sections
where the main attraction and the exiting touristic tours are presented.

TripHobo is an itinerary building website that based on seven categories, and the num-
ber and typology of travelers create a customized tour. The categories available
are adventure, arts and culture, entertainment, historical, leisure, outdoors, and
museum. It also includes transportation and hotel facilities.

Roadtrippers has two main functionality: explore places or plan trip. The explore place
section allows the user to select some feature as accommodation, attraction and
culture, food and drink, outdoors and recreation, point of interest, entertainment
and nightlife and some others more. It uses a map visualization where the user
selects one or more points, and the system renders the road trip between them.

Inspirock is like TripHobo, but it is limited to selected countries, and it doesn't allow
the user to edit the trip after its creation. The �lter mechanism enables the user to
select the degree of point of interest popularity and one or more categories between
culture, romantic, museum, outdoors, beaches, shopping, relaxing, wildlife, and
historical sites. The daily trips proposed are based on existing touristic tours.

Ixigo uses the same style of Google travel. When the user inserts the city, it gives him
some tips about the best period of the year to visit the city with the weather forecast
and which fabric type is more suitable for the selected period.

There are also countless other web sites that allows the user to insert the itinerary man-
ually and to keep track of his trip without give any suggestion on the journey creation.

13

Case Study

3.2 Requirement

The following chapter contains the requirements, both functional and non-functional, that
ensure the system quality. In the development, they were the milestones to monitor the
progress during the months. Since there wasn't a de�nite client, the requirements are the
result of market research and the opinion of the project advisor.

Before any further speci�cation, it is mandatory to explain the di�erence between standard
and authorized users. A standard user can access the website, navigate through pages,
insert categories and places, and generate a tour based on its preference. The authorized
user has speci�c priviledge given by the system administrator. It can review the data
inserted by the standard user and validate them.

3.2.1 Functional Requirement

The functional requirement speci�es the detailed requirements which the system shall
meet. The di�erent scenarios are presented using the Use Case diagram. Moreover, each
use case is described speci�ng:

� Main actor

� Precondition

� Input

� Output

Use Case UC01: Register

RF01 User registration

Main Actor User, both standard and authorized

Precondition The user didn't have an open session, and he is not registered
in the system.

Input The user wants to access the system

Continued from previous page

14

3.2 � Requirement

Output
1. The user opens the application.
2. The system shows the main page.
3. The user selects "Sign Up" button.
4. The system shows the sign-up form.
5. The user inserts username, email and the password

twice.
6. The user clicks on the "Sign Up" button
7. The system validates all the �elds.

7.1 If the username or the email already exists, the
system shows an alert. The user has to change
them to sign-up.

7.2 If the password, the email, or the username
doesn't respect the criteria, the system shows an
alert.

7.3 If the two passwords inserted, don't match the
system shows an alert.

8. The system redirects the user to his main page.

Continues from previous page

Table 3.1: Describes the main actor, the precondition, and the intentions of the Registration process.
In the output section are described the steps to achieve the registration.

Figure 3.2: The use case describes the access process to the system, both for authorized and standard
users. The detailed description is reported in the table 3.1 and 3.2

15

Case Study

Use Case UC02: Login

RF02 User Login

Main Actor User, both standard and authorized

Precondition The user didn't have an open session, and he is already reg-
istered in the system.

Input The user wants to access the system

Output
1. The user opens the application.
2. The system shows the main page.
3. The user selects "sign-in" button.
4. The system shows the sign-in form.
5. The user inserts username and password.
6. The user clicks on the emph"Sign In" button.
7. The system checks if the user exists and validates the

two �elds.
7.1 If the username or the password is wrong, the

system shows an alert. The user has to change
them to sign-in.

7.2 If the user with that username doesn't exists, the
system shows an alert.

8. The system redirects the user to his main page.

Table 3.2: This table describes the login process in all of its parts. First, de�ne the main actor and the
preconditions. Then it explains what the user wants to do. In the last section are reported
all the subsequent actions performed by the user and the system with the possible outcome.

16

3.2 � Requirement

Use Case UC03: Add new category

RF03 User add new category

Main Actor Standard User

Precondition The user has an open session, and he is a standard user.

Input The user wants to insert a new category.

Output
1. The user selects, on the navigation bar on the left, the "Add new

Categories" section.
2. The system shows the related page.
3. The user selects the form and inserts the category name.
4. The user selects the "Category" radio button.
5. The user clicks on the "Insert" button.
6. The system checks that this new category isn't already in the

database.
6.1 If the category already exists, the system shows an alert.

The user can insert a new one or continue to navigate in the
system.

6.2 If the insertion succeeds, the system shows an alert to notify
the user.

The user can repeat this action as many times as he desires.

Table 3.3: Describes the main actor, the precondition, and the intentions when the user wants to add
a new category. In the output section are described the steps to achieve the action and the
possible outcome.

17

Case Study

Use Case UC04: Add new subcategory

RF04 User add new subcategory

Main Actor Standard User

Precondition The user has an open session, and he is a standard user.

Input The user wants to insert a new subcategory.

Output
1. The user selects, on the navigation bar on the left, the "Add new

Categories" section.
2. The system shows the related page.
3. The user selects the "Subcategory" radio button.
4. The system shows the validate category already inserted in the

database.
5. The user selects the form and inserts the subcategory name.
6. The user selects one or more parent categories between the ones

rendered on the page.
7. The user clicks on the "Insert" button.
8. The system checks that this new subcategory isn't already in the

database.
8.1 If the subcategory already exists, the system shows an alert.

The user can insert a new one or continue to navigate in the
system.

8.2 If the insertion succeeds, the system shows an alert to notify
the user.

The user can repeat this action as many times as he desires.

Table 3.4: Describes the main actor, the precondition, and the intentions when the user wants to add a
new subcategory. In the output section are described the steps to achieve the action and the
possible outcome.

18

3.2 � Requirement

Use Case UC05: Add new point of interest

RF05 User add new point of interest

Main Actor Standard User

Precondition The user has an open session, and he is a standard user.

Input The user wants to insert a new point of interest.

Output
1. The user selects, on the navigation bar on the left, the "Add new

points" section.
2. The system shows the related page.
3. The user selects one point on the map.
4. The system renders a marker on the selected point, it blocks the

map and it shows a form.
5. The user inserts the place name and its description. It selects one

or more categories and subcategories.
6. The user clicks on the "Insert" button.
7. The system checks that this new point of interest isn't already in

the database.
7.1 If the place name already exists, the system shows an alert.

The user can insert a new one or continue to navigate in the
system.

7.2 If the insertion succeeds, the system shows an alert to notify
the user.

The user can repeat this action as many times as he desires.

Table 3.5: Describes the main actor, the precondition, and the intentions when the user wants to add a
new point of interest. In the output section are described the steps to achieve the insertion
and the possible outcome.

19

Case Study

Use Case UC06: Generate a touristic tour

RF06 User generate a tour

Main Actor Standard User

Precondition The user has an open session, and he is a standard user.

Input The user wants to generate a tour.

Output
1. The user selects, on the navigation bar on the left, the "Create

points of interest" section.
2. The system shows the related page.
3. The user selects one or more categories.
4. The system renders the subcategories related to the category se-

lected in the previous step.
5. The user optionally selects one or more subcategories.
6. The user clicks on the "Generate Points" button.
7. The system checks that there is in the database at least one point

linked to those categories and subcategories.
8. In case of success:

8.1 The system renders a map with the points found.
8.2 It also shows on the map a path between the points with

public transportation and a textual description of the jour-
ney.

9. In case of failure:
9.1 The system renders a map with no points.

The user can repeat this action as many times as he desires.

Table 3.6: In the tour generation process are described the main actor, the precondition, and the inten-
tions of the user. In the output section are described the steps to achieve the action and the
possible outcome.

20

3.2 � Requirement

Use Case UC07: Review and validation of categories and subcategories

RF07 User reviews and validates categories

Main Actor Authorized User

Precondition The user has an open session, and he is a authorized user. The categories
and subcategories are still not reviewed by no one.

Input The user wants to validate a category inserted by standard users.

Output
1. The user selects, on the navigation bar on the left, the "Review

category" section.
2. The system shows the related page.
3. The user sees two di�erent columns, one for the categories and one

for the subcategories. Each row has two buttons: "Validate" and
"Invalidate". The subcategory column also shows the reference to
its parent category.

4. The user can choose to validate or invalidate each category and
subcategory.

5. The user clicks on the "Validate" button associated to the category
that he wants to validate.

6. The system stores the information on the database.

The user can repeat this action as many times as he desires until there
are categories to review. The user also can validate or invalidate a
category after this �rst validation stage. It selects on the navigation bar
on the left, the "Validated categories" to invalidate or the "Invalidated
categories" to validate an already reviewed category

Table 3.7: Describes the main actor, the precondition, and the intentions when the user wants to review
a category. In this scenario it can validate or invalidate a category, as well as do nothing.
In the output section are described the steps to achieve the validation of a category. The
process to invalidate a category is exactly the same, the only di�erence is the button clicked
in the �fth step. The same process can be executed as well for the subcategories.

Use Case UC08 Review and validation of point of interest

RF07 Data fusion algorithm reviews and validates categories

Main Actor System administrator

Precondition The database contains points of interest still not validated.

Input The main actor wants to validate the point of interest in-
serted by standard users.

Continued from previous page

21

Case Study

Output
1. The administrator runs the algorithm
2. The system queries the database.
3. The algorithm checks for duplicate in the data
4. In case of success:

4.1 The system runs the data fusion algorithm
4.2 It stores the new data in the database.

5. In case of failure:
5.1 The algorithm terminates without any error.

The system administrator can repeat this action as many
times as he desires until there are point of interest to review.
The frequency of the operation is arbitrary and it depends
on the quantity of data inserted by the user. It is executed
at least once to create a reliable database as basis for the
application

Continues from previous page

Table 3.8: Describes the main actor, the precondition, and the intentions when the system administrator
wants to review points of interest inserted by standard users. In this scenario it can execute
the data fusion or not. In the output section are described in general the steps to achieve
the data fusion.

Figure 3.3: The use case describes all the actions that a standard user can execute in the system. All the
actions require that the user is logged in and is of type standard. The detailed description
is reported in the table 3.3, 3.4, 3.5 and 3.6

22

3.2 � Requirement

3.2.2 Non Functional Requirement

Non-functional requirements state how the functional requirements need to be achieved.
In the following section, they are presented using tables that specify the identi�cation
number, the type, and the description.

Usability

RNF01 Usability

Description The UI design is attractive for the user. The combination of shapes
and colors made the interaction more natural and intuitive. Moreover,
UI follows the logic of similar applications making the interaction more
comfortable and error-free. The users don't need the training to use the
application.

Table 3.9: Describes the usability requirement of the application.

Maintainability

RNF02 Maintainability

Description The developer has to easy correct defects or their causes, prevent un-
expected working conditions, and repair or replace components without
having to rewrite the whole code. Besides, the useful system life must be
maximized along with its e�ciency, reliability, and safety.

Table 3.10: Describes the maintainability requirement of the application.

Performance

RNF03 Performace

Description The system must have a short response time both in the UI rendering and
in the interaction with the backend. It should be acting in the same way
with di�erent users' load. The database size and the length of the path
for the tour to calculate don't have to a�ect signi�cantly the response
time that should be under 5 seconds.

Table 3.11: Describes the performance requirement of the application.

23

Case Study

Platform compatibility

RNF04 Platform compatibility

Description The software execution isn't a�ected by the platform where it runs. The
system must work well on every web browser. This non-functional re-
quirement also includes the portability one, in terms of abstraction be-
tween the application logic and the system interface to reduce the devel-
opment cost.

Table 3.12: Describes the platform compatibility requirement that also satis�es the portability one.

Reliability

RNF05 Reliability

Description The system can work under a de�ned condition for a speci�ed period.
It re�ects design perfection and resistance to failure of a component or
the whole application in terms of probability of success. It is strictly
related to availability and the users' behaviors. The possible failure of
the system can be related to human interaction, maintenance-induced
failure, and software failure.

Table 3.13: Describes the reliability requirement of the application.

Robustness

RNF06 Robustness

Description The system has to deal with errors during the execution and erroneous
input. It has to notify the user and continue without generate misleading
behaviors.

Table 3.14: Describes the robustness requirement of the application.

Operability

RNF07 Operability

Description All the system parts, frameworks, databases, and UI, have to work to-
gether to accomplish the common task. The system works without need-
ing application restart or any other non-automated interventions. It is
closely related to reliability and maintainability.

Table 3.15: Describes the operability requirement of the application.

24

3.3 � Architecture and Design

Security

RNF08 Security

Description The data integrity is mandatory for the security of all the information
stored in the database. The system has to implement access restrictions
and separation of jurisdiction between the users. Further, it has to im-
plement a mechanism to prevent informatic attacks.

Table 3.16: Describes the security requirement of the application.

3.3 Architecture and Design

This section explains �rst the technologies used, then it presents in detail the system ar-
chitecture and the design with a focus on the frameworks used. Subsection 3.3.2 describes
�rst the general architecture of the project. Then it reports the detailed architecture used
for the back-end and the front-end development. Subsection 3.3.3 includes the database
schema and the data representation used in the project.

3.3.1 Technologies

Before discussing about the system architecture and the developing process, the technolo-
gies used must be introduced. The ones employed in the frontend will be presented �rst,
followed by the backend technologies and, in the end, the database.

React is a javascript library purposely designed for the UI creation with the goal of
have an intuitive language capable of building dynamic and increasing complex
UIs. It is a declarative and stateless language made of immutable and reusable
elements nested together. React supports several frameworks and external plugin to
manage routing, API interaction, and more sophisticated features [53] [54]. Due to is
nature, React well �ts into the Model-View-Controller software design pattern. This
paradigm decouples the presentation logic and the data representation, enhancing
code reusability, and the usage of any backend language without restrictions.

Although there are several libraries for web application developing, the choice fell
on React because:

� Unlike JQuery it excludes a direct operation on the DOM. Instead, it provides
a virtual DOM to the developers to guarantee the best performance

� It is less complicated compared to AjaxJS

� It applies the Separation of Concerns. React isolate state and code based on
their scope of use to make the components more reusable at the expense of the
inherent separation of the MVC pattern.

25

Case Study

Figure 3.4: Model-View-Controller design pattern.

� React's component uses the JSX syntax allowing the developer to include
HTML in React.

React Redux is a state management library that synchronize state and UI components
to ensure the availability of the state information for all the components in the ap-
plication tree. It is a predictable state container that uses a central data store to
manage the state of the application. The store act as a source of truth on which
components can rely on state management [57].Three basic concepts are Redux's
cornerstone: store, action, and reducers. The whole app state is stored in an object
tree inside a single store. The store makes it easier to debug and inspect the applica-
tion. The only way to change the state tree is to emit an action, an object describing
what happened. All changes are centralized and follow a strict order avoiding race
conditions. Reducers are functions that specify how the actions transform the state
tree. It takes the previous state and generates a new one without modifying the
previous one [58]. This patter can be challenging for small applications, but it scales
to large and complex apps very well. The interaction between the three components
is shown in the following picture.

Figure 3.5: Interaction between store, action, and reducer in React Redux.

React Router is an API for React application that allows the creation of a single-page

26

3.3 � Architecture and Design

web application with dynamic navigation and it embraces the React's philosophy of
component-based architecture. The di�erence between static and dynamic routing
stands where the routes are declared. Static routing is declared when the app is
initialized outside of a running application. Dynamic routing instead, takes place
as the app is rendering. There are three main components: router, route matching,
and navigation. The router component is the core of the application; it must be the
outer component given to the DOM in the render method. It creates a history object
and enables these components to interact with it to manage the routing. The router
component is in its turn divided into two parts: Route and Switch. The Route is
mandatory, and it contains the path and a component to render when a location
matches the Route's path. The Switch can be omitted, but it is useful to group
the di�erent Routes and iterate among them to do the matching. Navigation links
are Link components to create links with styling attributes [56]. React Router also
enables the user to utilize the browser button, maintaining the correct application
view.

Node.js is a cross-platform and open-source Javascript runtime environment built on
Chrome's V8 engine. It allows the usage of javascript both on the client and server-
side letting to implement the Javascript everywhere paradigm, unifying the Web
application development under a single programming language. This choice makes
development faster and bug-�xing more e�ective. A Node.js application runs on
a single process without creating a new thread for each request going against the
model of the classical web server. It accesses the operative system resources through
the event-driven model. This model is based on a simple concept: every time there
is a change an event is �red. Node.js uses a non-blocking paradigm, making the
blocking behavior the exception; in this way, it avoids the waste of memory and CPU
cycles, in favor of increased performance. This characteristic makes it perfect for
the creation of a data-driven application where the I/O is put to the test. Node.js is
very �exible in terms of development architecture because it has few dependencies
and loosely Node.js came along with a standard package management useful for
download and installed several plug-in and dependencies. Even if npm is the largest
javascript repository, its quality is still under veri�cation. The lack of a control
mechanism on these modules leads to a careful choice of them from the developer
[60] [61]. Node.js is a low-level platform, and there are thousands of libraries build
on it to make the development easier.

Express.js is the de facto standard server framework for Node.js. It is an unopinionated
framework that has few restrictions on how to achieve goals and which component
to use. It provides common tasks not directly provided by Node as routing and
middleware integration. Routing determines how the server responds to a request
to a particular URI and HTTP request method. Route path can be string, string
pattern, or regular expressions. The server listens for requests on a speci�c route
and method when it detects a match execute the callback function associated with
it. Route handlers behave like a middleware with the only exception of the next()

27

Case Study

function, that can be used to skip the remaining route callbacks. The callback func-
tion has to send a response back to the client to avoid letting the request hanging.
The express.Router class creates modular route handlers that is a complete middle-
ware [59]. Middleware functions can access the request-response object and the next
middleware. They can execute code, change the request-response object, end the
function exiting the request-response cycle and call the next middleware function in
the stack. Express can use di�erent types of middleware:

� Application-level is bind to the app object through the app.use() function. It
takes three arguments request, response, and next.

� Router-level is bound to the router object and works in the same way as the
previous one.

� Error-handling is bind to the app object but takes four arguments: error and
the usual ones.

� Built-in includes the JSON parser for incoming requests.

� Third-party is installed using npm and is applied using the app.use() function.

In the speci�c case of the thesis, express interact with three leading middleware:
cors, passport, and sequelize. Cors implement the cross-origin resource sharing
a security policy that allows the server to specify who can access it and which
HTTP request use. Passport is an authentication middleware designed to manage
both traditional and through an OAuth provider as Facebook, Twitter, and Google.
Sequellize is an Object-Relational-Mapper for Node.js. Its basic idea is to abstract
the complexity of interfacing with the database writing SQL queries using the object-
oriented paradigm instead of pure SQL [62].

PostgreSQL is an open-source object-relational database management system. It uses
a client/server model where the two processes cooperate and communicate through
a TCP/IP network connection. The server process, called Postgres, manages the
database and performs actions on it on behalf of the client. The client application
can have di�erent natures: web server, text-oriented application, or database man-
agement tool. PostgreSQL supports standard SQL and adds more complex features
that simplify management and prevent data loss and corruption [62].

Python is a high-level programming language that can rely on several resources and
libraries. It is a highly versatile language that hides from the user its complexity and
allows fast application development. This language supports di�erent programming
paradigms, it is no variable dependency and it outperforms in terms of execution and
development speed. All these features make it the best language to code algorithms.

28

3.3 � Architecture and Design

3.3.2 System architecture

The system architecture is composed of sub-systems that work together to implement the
overall system. This project is based on a client-server architecture, shown in the �gure
3.6, where clients can use any desktop computer with a modern browser. The server
can be unique or replicated, and it communicates with a PostgreSQL database and the
OTP service. The data fusion algorithm is not executed every time there is an insertion
in the data base, but it is executed periodically.The system administrator triggers the
execution when the number of places inserted exceeds a �xed threshold. The client-server
architecture has several advantages that �t the project scope.

Figure 3.6: Client-server architecture of the project. It shows the connection between the components
and also includes the server connection with the PostgreSQL database and the OpenTrip-
Planner service. Each client has its instance of the OpenStreetMap. It shows the interaction
between the application and the data fusion algorithm

First of all, the system ensures the separation between the presentation and business
logic. Business logic includes all the processes invisible to the user that are the core of
the application; the presentation logic consists of the UI representation instead. This
separation ensures uncomplicated maintainability because any changes in the back-end
don't a�ect the presentation layer, and the changes are centralized. Moreover, the client
can access the system without any speci�c con�guration. The front-end development can
be uncoupled because the communication between client and server should agree only on
the data representation and the communication protocol. It is a cheap architecture in
term of human cost, the security and the maintainability are centralized, so fewer support
sta� is required [48].

Back-end architecture

The back-end architecture is divided into two subsystems: the �rst one regards the services
related to the web application and the other one concerns about the data fusion algorithm.
The application back-end follows the REST architectural style. The representation state
transfer de�nes a set of constraints for web services creation that provides interoperability
between systems over the internet [49] [50]. A RESTful API is based on the following
guideline:

29

Case Study

Separation of concern between client and server enables the components to grow au-
tonomously. It improves client portability across di�erent platforms, and it increases
the server scalability by streamlining its components.

Responses cacheability can be enabled by clients or servers to improve performance
or disabled to avoid to receive stale data.

Stateless server protocol binds the session state to the client. In each request sent,
the client must include all the information required for the communication.

Layered system used to improve scalability and security. This feature is liked to the
separation of concern explained before. The client is not aware of who he is commu-
nicating with because additional layers can be added to the server to improve load
balance, security policies, or caching mechanism. Furthermore, the server can call
other web services to introduce additional functionality.

Uniform interfaces to simplify and decouple the architecture. Unique URI identi�es
individual resources that are conceptually separated by the data representation re-
turned. The message returned includes enough metadata information to be manip-
ulated or deleted. A standard interface like HTTP is used for communication.

RESTful systems aim for fast performance, reliability, and scalability, as explained be-
fore. Following this architectural style, components can be managed and updated without
a�ecting the system even while it is running.

The data fusion system is independent of the application back-end because it interacts
only with the database instance. It is executed locally by the system administrator, and it
only depends on the data inserted in the database. This system is seen as a black box by
the application and the system administrator. It is composed of three sequential modules
that handle the problem at three di�erent levels: schema, tuple, and values, as showed in
�gure 3.7.

Figure 3.7: High-level representation of the data fusion algorithm. It shows the three di�erent modules
of the algorithm and the interactions between them.

Front-end architecture

The implicit connection between React and the Model-View-Controller design pattern
described in section 3.3.1 leads to think of embracing the MVC design style. The problem

30

3.3 � Architecture and Design

with MVC is the bidirectional communication that made the code less maintainable and
challenging to debug. Facebook, which developed React, presented a new architecture
called Flux for building React web application with unidirectional data �ow [41]. Four
elements are the basis of Flux: Action is an object with property and data, Store contains
the application state and logic, View listen to store changes and re-render accordingly,
and dispatcher is a process implementing actions and callback functions [51]. Based on
this architecture, the thesis is developed using Redux, an architecture based on Flux that
di�ers from it for the absence of the dispatcher and the concept of data immutability.

In the project, React is the View layer, and Redux is the Store.The overall architecture
with components and relationships is represented in �gure 3.8.

Figure 3.8: React+Redux architecture details with highlights on the components and the relations be-
tween them.

The container is an abstraction layer that allows Redux and React to be decoupled,
therefore, to change and grow autonomously. It translates the changing in the Redux
state to React props, and when in React, an event happens, it triggers the corresponding
action in Redux. A Component is a piece of code that renders and uses a set of props
passed by its parent that can be a component or a template. A template is merely an
additional abstraction level. The Action is an object containing the type of action, and
the state changed because of the action. It communicates with the server to execute the
action required by the React event, and it sent the result to the Reducer. The Reducer
is the only component allowed to change the state creating a new one. The selector is an
abstraction level between the Store and the Container [52].

31

Case Study

3.3.3 Data representation

The data used by the application is stored in a relational database. An ORM technique can
be used to simplify the development and increase maintainability. The Object Relational
Mapping technique allows the developer to manipulate and query the data in the database
using an object-oriented approach. It implements a data layer that creates a "virtual
object database" and acts as a translator between the object-oriented language and the
database, reducing the need for SQL language. The ORM translates the logical object
representation in a suitable form that can be stored in the database preserving the object
properties [47].

This project uses Sequelize, an ORM promise-based for Postgres, MySQL, and other re-
lational databases [33]. The �rst step is to create a Sequelize instance to connect to the
database. Then the developer has to de�ne for each database table a model in Sequelize.
By default, the createdAt and updateAt �eld are inserted in the model to track the mod-
i�cation done on the table. The application will interact with the database directly with
this model. After the model creation, it must be deployed in the database using the
Sequelize migration.

Figure 3.9: Schema of the project database.

Figure 3.9 shows the database model created using the migration. The Categories and
Places tables are linked with the Users one through a foreign key on the user email.
The Places table also has two more foreign keys referring to the categories and subcate-
gories stored in the Categories table. The Categories table includes both categories and
subcategories that are de�ned using a foreign key applied between the id and parentId
attributes.

32

3.4 � Development

3.4 Development

This chapter details the implementation of the project, explaining the functionality and
the most signi�cant element employed. It includes UML diagrams and snapshots of the
application both of code and UI. Before entering the implementation details, let's intro-
duce the development environment.

The development environment is a set of processes and tools used to develop source code
and debug it. WebStorm is the JavaScript IDE created by JetBrains that covers all
the modern JavaScript languages as React and Node.js. It provides to the developer
intelligent code completion and on-the-�y error detection. For these features and the
built-in integration with Git and GitHub, it was chosen for the development of the entire
project. Git is a revision control system and a source code management that was used in
the project to keep track of its history. It was used together with a GitHub account where
the project information was stored. GitHub is a web-based hosting service that uses Git.

3.4.1 Homepage

Figure 3.10: App homepage

The �rst view presented to the user is a map showing the point of interest, inserted and
already validated, as markers on the map. This is a public page where both registered and
non-registered users can access it. In the top-right corner, there are the Sign-in and Sign-
up button to allow access to the restricted part of the system. In the development, Lea�et
was used to show the OSM map in the application. Lea�et is an open-source Javascript
library designed to ensure simplicity, performance, and usability. It is highly customizable
and supports several plugins to extends its features [63]. When a user navigates to the
homepage, the browser asks him to allow the localization. If it is enabled, the map will
zoom in on his position, and a localization marker appears. Otherwise, nothing happens,
but the system could not work correctly in the next phase of tour creation. The user can

33

Case Study

navigate on the map, and when he goes on a marker, the system shows the place name as
shown in �gure 3.10.

The system to render the point of interest on the map, interact with the server. The only
API call that can be executed by an unregistered user is the getAll one showed in �gure
3.11. The system asks for the points of interest already validated by the authorized user.
Since this page is public, the server returns only the name and the geographic coordinates
of the point without any information about who inserted it.

Figure 3.11: Sequence diagram for points of interest retrieval.

3.4.2 User login

As said before, the user to access all the application features has to log in and start a
new session. To handle the authentication, a speci�c service was developed using JSON
Web Tokens. JWT is a compact and self-contained solution for transmitting information
between parties that can be veri�ed and trusted because it is digitally signed. JWT is
composed of three di�erent parts: header, payload, and signature. The header contains
the speci�cation for the type of token and the algorithm used. User-related information
and token metadata are stored in the payload. The signature is used to verify the token,
and it is created trough the encoded header, the encoded payload, and the secret known
by the token issuer. Any changes in the token modi�es its signature and invalidate it.
The JWT is used as an access token for the protected features of the system.

Every time the user enters the application, he receives an access token. For design choices,
the client stores the access token and sent it to the server through cookies. Figure 3.12
shows all the calls executed by the system in the login process. This scenario represents
the login of an already registered user that inserts all the correct parameters, explained
afterward. The signInValidation function validates the data inserted by the user and
returns the error if it founds some illegal data. It the case represented, the user has
inserted the correct ones, so the validation returns an unde�ned error that means success.
The JTW token and the username are stored by Redux in the client-side.

The user interface showed in �gure 3.13 follows the style of the most popular software to
make the user comfortable with a familiar scenario. The user as to insert the username
and the password, then he selects the SignIn button. In case he miswrote any of the two

34

3.4 � Development

Figure 3.12: Sequence diagram of the login process. The �rst lifeline on the left it the one related to
the client. The others are all calls within the server.

Figure 3.13: App login page

�elds, leaves one of them empty, or inserts illegal code in them, he is noti�ed with an
alert. In case the login succeeds, the main page connected with his state of normal or
authorized user is automatically rendered.

3.4.3 User Registration

During the registration process, the user must follow some speci�cations for username
and password creation. The username must be at least 6 characters long and contain only
alphanumeric characters and underscores. The password requires at least 8 characters,
including an uppercase letter, a digit, and a special symbol. It has to be repeated another
time for safety. The form used for the registration process also uses a structure similar

35

Case Study

to the other popular website. In case any �eld showed in �gure 3.14 is empty or doesn't
respect the constraint explained before, the user is noti�ed.

Figure 3.14: App registration page

When the user hits the SignUp button, the client sends a POST request to the server. The
input validation process is called and permit to proceed with the new user insertion. This
process showed in �gure 3.15 is practically the same described in �gure 3.12. The only
di�erences are the URI of the request, and the parameter send with it. If the user inserted
a username already taken or the email already exists, the user is noti�ed to allow him to
change them and start the process again. When the process is completed successfully, the
user is directly redirected to his homepage and receives with the response the JWT and
his username.

Figure 3.15: Sequence diagram of the registration process.

36

3.4 � Development

3.4.4 Token Validation

The system has to validate the token every time the user requests a private route. The
system speci�es three functions to verify the di�erent access privileges. The verify.normal
is used to check if the user that wants to access the resource is registered and is a standard
user. The verify.authorized one examine if the user has the authorized privilege. There is
also a general function called verify.general, used to check only if a user is registered in
the system because both types of users can access some resources in di�erent contexts.

Figure 3.16 reports the sequence diagram for the token validation. First, the server has
to retrieve the JWT from the request cookies. In case the function found it, the token
is validated with a proprietary function of JWT that decrypts the payload and takes the
userId previously stored there. The server then queries the database to �nd if the user
corresponding with that id is registered and noti�es the user accordingly. If the user tries
to access unauthorized resources, the system automatically redirect him to the login page.

Figure 3.16: Sequence diagram of the authentication process.

3.4.5 Standard user features

The standard user is the one that can add valuable information on the application and
the one with more sophisticated features. On his homepage can choose three di�erent
activities explained in the following subsections, or he can logout using the SignOut button
in the header showed in �gure 3.17, 3.20, 3.23 and 3.25 using a straightforward process.
The SignOut button triggers an action on the Redux reducer and sets the global state to
the initial state before the login.

37

Case Study

Insertion of a new Category

The �rst feature of the software is the categorization of point of interest. By default,
the system already has six categories: Building, Museum, Activity and Leisure, Outdoor,
Leading Figure and Artistic Movement. Each of them has several subcategories that can
be liked to one or more categories. Even if the categories cover many touristic aspects,
the possibility for the user to add a new one was inserted.

Figure 3.17: Add new Category tab of the application. The user has already selected the subcategory
�eld, and the system has rendered the possible parent category between choose.

The user to insert the category selects the Add new category tab in the left navigation bar
showed in �gure 3.17. He can choose between the insertion of a category or a subcategory.
In the category case, he inserts the name, selects the Category button, and clicks on
Insert. The sequence diagram, �gure 3.18, exposes the API calls executed. First, the
system checks if the user is a standard one and is registered, and it validates the input.
Then it queries the database three times to ensure that there isn't any category with that
name, to count the existing categories to give a sequential id to the categories, and if any
error occurs, it inserts the new category. In case of success or error, the user is noti�ed.

For the subcategory insertion, the user has to select the subcategory button; the system
requests the main categories through a GET request following the steps reported in �gure
3.19. The user then selects one or more categories and continues as explained for the
category insertion. To get the categories, the system checks �rst if the user is registered
in the system, and afterward, it retrieves from the database the category already validated.
The process to insert a subcategory is the same; the only di�erence is the request URI,
and the parameters passed with it.

38

3.4 � Development

Figure 3.18: Sequence diagram of the category insertion process.

Figure 3.19: Sequence diagram of the process for get the categories already validated by the authorized
user.

Insertion of a new point of interest

One of the central purposes of the application is giving value to user knowledge and ensure
the most trustworthy and free journey. The idea is to insert points of interest that cover
not only the major sightseeing but also hidden or less know places. The user can do it
within the website, selecting the tab Add new point of interest. If he has enabled the
localization, it sees a map zoomed on his position; otherwise, he sees the general map,
as explained in section 3.4.1. In this case, the points of interest already validated are
represented with orange markers; the new point selected by the user is a blue marker.

When the user selects a point on the map, the system blocks the map and renders a popup

39

Case Study

Figure 3.20: Add new point of interest tab of the application. The user has already selected the point on
the map and the Outdoor category,and inserted the place name. The subcategory rendered
by the system are the one related to the Outdoorcategory already selected.

form, as in �gure 3.20, where the user can insert name, categories, subcategories, and a
description. Between them, the name and at least one category must be inserted. The
system shows in the form latitude and longitude where the user clicked and store them
with the username and all the other information in the database, as reported in �gure
3.21.

Figure 3.21: Sequence diagram of the point of interest insertion process.

A post request is sent to the server that validates token and input and creates an instance
on the database. The �ow of the process is similar to others already explained in the
previous sections. But this one requires two other API calls. The �rst one is included in
the map creation, as explained in the 3.4.1 section, for the retrieval of point of interest
already validated. The second API call, described in �gure 3.22, can be repeated every
time the user selects a category button to retrieve the subcategories linked to the selected

40

3.4 � Development

category. There is a POST request to the server that veri�es the token and asks the
database for the subcategories validated that have as parent the one stored in the request
body.

Figure 3.22: Sequence diagram of subcategory request process.

Tour Creation

Figure 3.23: Creates point of interest tab of the application. The user has already selected the Buildings
category and the system renders the subcategory related to it.

The last, but not least feature available for a non-privileged user is the customized tour
creation. The user navigates to the Create points of interest tab on his homepage. The
system renders the �rst screen, reported in �gure1, where the user sees and chooses the
validated categories. To do so, it executes the GET call explained in section 3.4.5 �gure
3.19. For each category selected by the user, the system executes the same call to the API
explained in section 3.4.5 �gure 3.22. The user can choose many subcategories as well.
To help the user in the visualization of the categories chosen, the system renders them

41

Case Study

with a di�erent color. The user can select and deselect each category manually or undo
all by selecting the Clear choice button.

When the user is satis�ed with the �lter selection, it clicks on the Generate points button,
and the system executes the API call reported in �gure 3.24. As usual, the server checks if
the user has the right privileges to execute that call. It queries the database to found the
places that were categorized with the tag selected by the user. The result of the database
aren't returned directly to the user because it is a waste of bandwidth to execute another
call to the server for the tour generation. The server automatically calls the sortPoint
function passing the data retrieved from the database and the current position of the user.
In this scenario, the user must allow the localization to use the service.

Figure 3.24: Sequence diagram of the tour creation process.

The sort function uses a brute force approach because during the design was assumed that
point categorization was focused and careful to give the best performance possible. This
function computes in the �rst iteration, the distance between the current user position
and all the points returned by the database. The nearest point goes in the array as
the second element, and the process iterate again. This time the system computes the
distance between the second element of the array and the remaining point, putting the
new solution in the third position. The function ends when there aren't any more points
on which iterate.

The OTP service can create the itinerary only between pairs, so it can't receive the array
as a whole. Therefore, the system passes the sorted array to the generateItinerary function
that iterates on the array, takes a point and its following one, and sends them to the OTP.
To work the OTP also needs the time and date of departure, which are set in our system
by default with the current date and time, the maximum walking distance between the
di�erent bus transit, set to 500 meters, and the transport modes to consider, in this case,
walk and public transportation. The function creates a new array with the itinerary linked
together and returns it �nally to the user.

42

3.4 � Development

If the research of points didn't produce any result, the user is noti�ed. Otherwise, the
system renders a new screen with a map and a description box, as shown in �gure 3.25.
In the map are present only the point of interest received back from the server and not
all the points as in sections 3.4.1 and 3.4.5. The user can navigate the map and see the
point name as in section 3.4.1. The system renders with two di�erent colors, the bus path
and the path where he has to walk, and when he passed over a path with the cursor, the
line name is shown. To make the user comfortable was inserted a description box where
the journey is described in a discursive way. If the user is not satis�ed with the tour, he
can select the Create points of interest tab on his homepage again.

Figure 3.25: Creates point of interest tab of the application after the tour creation. The user navigates
on the map and points on the bus line D20.

43

Chapter 4

Proposed Solution

The goal of the thesis is to develop a data fusion algorithm to extend and validate the
data inserted in a database containing points of touristic interest related to Turin. Each
point of interest is represented by name, latitude, longitude, categories, and eventually
subcategories. The categorization of these points is the principal element of the application
because the user selecting the categories receives back a touristic tour related to them.
For the creation of the application's dataset are selected three di�erent sources: open data
of Turin city hall (AperTO), WikiData query results, and user inserted data as explained
in section 3.1.1. The schema heterogeneity and the need to automatically validate the
data inserted by the users has led to the need to adopt data fusion techniques. The
algorithm developed to overcome these limitations falls into the category of three steps
data fusion algorithm. To better explain the proposed solution, each step of the algorithm
is contained in a di�erent section of this chapter.

In section 4.1 is described the algorithm performing the schema matching. This sec-
tion underlines the di�erence between the sources at the schema level with the solution
adopted. Duplicate detection is reported in section 4.2 where is presented the DCS++
algorithm and the similarity measurement used. Section 4.3 reports the con�ict resolution
performed by the data fusion algorithm and the function used.

4.1 Schema Matching

Data retrieved from di�erent sources can be published with di�erent schemas and formats.
The datasets selected for the case study have all the same CSV format but di�erent
schemas. It is necessary to point out that the dataset AperTO is composed of seven
di�erent CSV �les that enclose speci�c points of interest for one category or sub-category.
From now on, every time the AperTO dataset is reported, it refers to all the seven �les
in it. Before dealing with speci�c problems inherent in each dataset, it is crucial to select
the schema to use for the next phases. Since the data will be used as support for the
application, and already exists a schema used by the application to retrieve the data from

45

Proposed Solution

the user, it is straightforward to use that schema. The schema used is described in section
3.3.3, and more speci�cally, it is the Places table shown in �gure 3.9.

As explained in chapter 2, this phase of the algorithm is context-aware, and it uses two
di�erent strategies to transform the data based on the dataset considered. Multiple data
transformations must be executed regards the datasets of AperTO.The �rst inconsistency
regards the coordinates representation. In the AperTO datasets, coordinates are reported
as a pair in one column following the representation of the Geospatial point, in the selected
schema, latitude and longitude are stored in two di�erent columns instead. There is
another disagreement between these two schemas regarding the geographical reference
system used. Coordinates in AperTO datasets follow the Gauss-Boaga Roma40 western
projection, a grid system based on the Roma 1940 geodetic datum whose origin lies at
Monte Mario near Rome, and it is divided into western and eastern zone. WikiData and
user inserted data follow the World Geodetic System (WGS), which is a standard used
by the Global Positioning System (GPS). These transformations are executed together
by the algorithm. For each �le in the AperTO dataset, it loops over the row, selects the
corresponding column, transforms the Geospatial point in two di�erent values, converts
the coordinates in WSG, and stores them in two di�erent columns.

For the next phase of data transformation, an intermediate schema was inserted to facil-
itate the mapping between categories included in the AperTO and WikiData datasets in
string format and their corresponding identi�er stored in the application database. The
algorithm �rst creates a new schema that combines together columns of the WikiData
dataset, and the selected schema explained before. Then it inserts in this schema the
data from WikiData and AperTO datasets. At this point, the algorithm retrieves from
the database the mapping between categories, subcategories, and identi�er and stores it
into a map. It executes, for each row in the new schema, a comparison between the cat-
egory in string format and the map created before. After a row is converted in the right
category format, it is inserted in the Places database. At the end of this phase, all the
data are inserted in one table using a common schema; therefore, the problem of schema
heterogeneity is solved.

4.2 Duplicate Detection

The core of the algorithm is the duplicate detection phase because the data found here
underlie the data fusion process. The algorithm has to deal with a massive amount of
data and limited computational resources. The performances of the algorithm depend on
the amount of comparison executed, to overcome this challenge, the search space must
be reduced. Two di�erent methods exist, as explained in section 2.2.2: blocking and
windowing.The blocking method split the data into �xed non-overlapping blocks, and it
searches for duplicates only inside the block. The windowing method, instead, creates a
window that slides over the data. The limitation of the blocking method is that if two
duplicates are in di�erent blocks, the algorithm does not �nd them because they will be
not compared. For this reason, it is preferable to use the windowing method instead. The
size of the windows can be �xed or dynamically adjusted during the execution. Since it is

46

4.2 � Duplicate Detection

challenging to select the perfect window size a priori and, even if it is found, the number
of duplicates can vary in the dataset, the size of the window chosen for the project is
modi�ed dynamically during the execution.

Duplicates may be located in the same windows or at entirely di�erent locations. In
order to increase the likelihood that duplicates are in the same neighborhood, data can
be sorted according to the discriminating columns for the project scope. Based on the
consideration presented so far, the existing algorithm that �ts better in the requirements
is the Duplicate Count Strategy with multiple record increase (DCS++). This algorithm
is based on the Sorted Neighborhood Method, and it adjusts the size of the window based
on the duplicate number found during each iteration. It requires a starting size of the
window and a threshold to allow the growth of the window. As explained in [19], if the
threshold Φ depends on the size of the window w following equation 4.1, the algorithm is
at least as e�cient as SNM with the same window size.

Φ =
1

w − 1
(4.1)

As reported in algorithm 1, it �rst sorts the data and populates the starting windows, and
then it iterates over all data searching for duplicate. The algorithm always compares the
�rst element of the window with all the others; when it founds a duplicate, it increases
the duplicate count duplicates and inserts in the skipRecords array the win[k] element,
in other words, the duplicate of the �rst element. Then it checks if the size of the win-
dow should be increased and it behaves accordingly. For each comparison executed, the
algorithm increases the comparison count comparisons and executes the second check
on the window growth based on the threshold reported before. Every time the window
slides over the data, the algorithm has to check ahead if the �rst element in the window
is present in the skipRecords array. If the element is not in the skipRecords array, the
algorithm executes all the tasks explained before. Otherwise, it just sets k = w; this is a
modi�cation to the standard DCS++ algorithm because, during the development of the
algorithm, it inserted wrong values after it found a record to skip due to wrong k values.
The last part of the algorithm slides the window by removing the �rst element from it,
adding a new value to the window, and eventually resize the window to the starting value
of w.

The parameters that can be modi�ed to achieve better performance during the execution
of the algorithm are three: the starting size of the window w, the sorting method, and the
isDuplicate function that returns the duplicates. Given that in the project, duplicates
can be found based on the name or the coordinate inserted, four di�erent possibilities
can be studied. Data can be sorted alphabetically based on their name or by their dis-
tance checking the coordinates. The string similarity of two places names or the distance
between the pair of coordinates of two points can be used to check if these points are
duplicates. Combining these two considerations, in the following section are described in
detail the four combinations of sorting and detecting duplicate methods.

47

Proposed Solution

Algorithm 1 Duplicate Count Strategy with multiple records increase (DCS++)

Require: w > 1 and 0 < Φ ≤ 1

1: Sort records
2: Populate windows win with �rst w records of record
3: skipRecords ← null
4:

5: for j ← 1 to records.length do
6: duplicates ← 0
7: comparisons ← 0
8: k ← 1
9: if win[0] not in skipRecords then
10: while k ≤ win.length do
11: if isDuplicate(win[0], win[k]) then
12: emit duplicate pair (win[0], win[k])
13: skipRecords.add(win[k])
14: duplicates ← duplicates + 1
15: while win.length < k+w−1 and j+win.length < records.length do
16: win.add(records[j + win.length + 1])
17: end while
18: end if
19:

20: comparisons ← comparisons + 1
21: if k = win.length and j + k < records.length and duplicates

comparisons ≥ Φ then
22: win.add(records[j + k + 1])
23: end if
24: k ← k + 1
25: end while
26: else
27: k ← w
28: end if
29:

30: win.remove(0)
31: if win.length < w and j + k < records.length then
32: win.add(records[j + k + 1])
33: else
34: while win.length > w do
35: win.remove(win.length)
36: end while
37: end if
38: j ← j + 1
39: end for

48

4.2 � Duplicate Detection

4.2.1 Sorting methods

The sort key can be composed of one or more columns in the dataset that manages the
data sequence. In this project, the leading columns are latitude, longitude, and place
name. Creating a sort key that combines signi�cant parts of all of them is challenging
because it is not easy to select just a part of all the three values maintaining a signi�cant
part of all of them. For this reason, two di�erent strategies are applied to sort the data:

Order by clause is inserted directly in the SQL query to the database. With this method,
data are retrieved alphabetically based on the name inserted in the database. It
does not require any data modi�cation afterward because the SQL query is already
optimized. This clause cannot be used with latitude and longitude since it does not
exist a way to execute the �order by� on a pair with the same weight, but it must
choose a major and minor sort key.

Euclidean distance method modify the data after they are retrieved from the database
by a simple SQL select query. A function iterate over the data, and for each pair,
calculate the Euclidean distance between them ordering the points accordingly. It
is necessary to clarify that the coordinates are represented following the World
Geodetic System (WGS), which, from a geometric point of view, can be seen as a
Cartesian reference system. Based on this assumption, the Euclidean distance gives
an accurate distance measurement calculated following the formula 4.2.

d =
√

(P1x − P2x)2 + (P1y − P2y)2 (4.2)

4.2.2 Duplicate Detection functions

In algorithm 1, the function isDuplicate represents the core of the algorithm. Since the
discriminating columns in the dataset are name, latitude, and longitude, the comparison
to �nd duplicates can be executed on each of them individually, or they can be combined.
All three possible solutions have been implemented because it is not possible to establish
in advance which one will reach better performance. The isDuplicate function can use
one metric between the following: string similarity, Euclidean distance, a combination of
both of them.

String similarity algorithm is applied to the name attribute. Di�erent types of measure-
ment can be used because they follow di�erent techniques to check the similarity. The
�rst one proposed is the Ratcli�-Obershelp similarity, a sequence-based algorithm that
searches the most extended sequence contained in both strings. The score is calculated
by doubling the number of matching characters divided by the total characters number of
the two strings. Levenshtein distance belongs to the edit distance based algorithms. The
similarity is estimated by counting the number of operations need to transform the �rst
string into the second. It allows three transformations on a single character: insert, delete,
and replace. It belongs to the same category of algorithms, the Jaro-Winkler algorithm.

49

Proposed Solution

However, it has two conditions: strings must contain the same characters with a speci�c
distance between them, and the matching order must be the same. The last algorithm
considered is the Jaccard, a token-based algorithm that works on single characters instead
of strings. The similitude is calculated by dividing the mutual tokens by the number of
unique tokens in the strings.

Euclidean distance metric is applied to a pair of points, as explained in section 4.2.1.
The latter method inserts in the isDuplicate function execute a check on both string
similarity and coordinates distance. For each metric used, a threshold is established to
allow the emission of the duplicate only when the metrics respect the threshold. Based
on the sorting methods reported in section 4.2.1 and the functions explained before, four
di�erent scenarios are created:

� sort the data alphabetically and emit duplicates based on similarity measurement

� sort the data alphabetically and emit duplicates based on the combination of string
similarity and coordinates distance

� sort the data and emit the duplicates following the Euclidean distance

� sort the data following the Euclidean distance and emit the duplicates based on the
combination of string similarity and coordinates distance

The output of the duplicate detection phase of the algorithm is a CSV �le where each row
contains a set of duplicated data.

4.3 Data Fusion

TThe last part of the algorithm executes the fusion and the validation of the data applying
two di�erent resolution strategies. It iterates over the CSV �le received from the previous
phase, and for each row, it retrieves the duplicated data from the database and execute the
fusion. The data with which the algorithm works come from di�erent sources, as described
in the introduction of chapter 4, with di�erent levels of trust. To have high-quality data,
a gold standard is introduced in order to keep the leading information coming from the
most trustworthy source. Initially, the AperTO dataset was selected as gold standard since
the local administration maintains it, but after some researches, it has been discovered
that this dataset contains misleading information. For this reason, the new gold standard
selected is the WikiData dataset.

The algorithm between the duplicated data �rst checks the data source, if it founds an
entry coming from WikiData, marks it as the gold standard. If no entry from WikiData
is found, the algorithm checks for the AperTO ones, and if it found it, this entry is chosen
for the gold standard. When an entry became the gold standard, the name and the
coordinates that it contains will be the one selected for the unique data returned after the
fusion process.

50

4.3 � Data Fusion

Algorithm 2 Data Fusion pseudocode for the categories and subcategories integration

Require: duplicateList and goldStandard

1: Φ ← 3
2: userCat ← null
3: userSubCat ← null
4:

5: for item in duplicateList do
6: if item.get(placeOwner) = (Wikidata or AperTO) then
7: for element in item.get(catId) do
8: if element not in goldStandard.get(catId) then
9: insert element in the gold standard
10: end if
11: end for
12: for element in item.get(subCatId) do
13: if element not in goldStandard.get(subCatId) then
14: insert element in the gold standard
15: end if
16: end for
17:

18: else
19: for element in item.get(catId) do
20: if element not in goldStandard.get(catId) then
21: if userCat.count(element) < Φ then
22: insert element in userCat
23: else
24: insert element in the gold standard
25: end if
26: end if
27: end for
28: for element in item.get(subCatId) do
29: if element not in goldStandard.get(subCatId) then
30: if userSubCat.count(element) < Φ then
31: insert element in userSubCat
32: else
33: insert element in the gold standard
34: end if
35: end if
36: end for
37: end if
38: end for

51

Proposed Solution

Regarding the selection of categories and subcategories, the algorithm behaves di�erently
based on the source, as shown in algorithm 2. When the algorithm deals with data coming
from AperTO and WikiData datasets, it integrates their categories without any further
check because these two are trustworthy sources. Data coming from users are subject to
additional analysis, and to be integrated into the �nal categories, at least three users have
to insert the same category on the selected place to be considered valid. The threshold is
chosen empirically and can be a point of weakness of the algorithm.

At the end of each duplicated set, the algorithm updates the database entry previously
selected as the gold standard inserting the new categories and subcategories retrieved
during the process, and mark this entry as veri�ed. Now the entry can be used by the
front-end application to generate the customized touristic tour.

52

Chapter 5

Result Analysis

Before executing a detailed analysis of the di�erent possible cases, it is mandatory to
introduce the metric used to evaluate the performances. As explained in chapter 4, the
core of the algorithm is the duplicate detection phase that falls into the categories of the
classi�cation algorithm. The confusion matrix reported in table 5.1 is the basis of all the
performance metrics linked with classi�cation algorithm. It contains four di�erent data
type based on the combination of actual value and predicted value of a set:

TP � True Positive where the actual class of the considered point is true, as well as
the predicted one.

TN � True Negative is the case in which both the actual class of the point and pre-
dicted one is false.

FP � False Positive when the actual class is false, but the predicted one is true

FN � False Negative is predicted negative even if it is actually positive

Prediction
Positive Negative

Actual
Positive TP FN
Negative FP TN

Table 5.1: Confusion Matrix

The performance metrics based on the confusion matrix that are taken into consideration
are reported below. The accuracy is the easiest one, and it is the ratio of the correctly
predicted over all the observations, as reported in equation 5.1. This metric is meaningful
when the number of FP and FN are balanced.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

53

Result Analysis

Equation 5.2 reports the precision that represents the number of the true positive predicted
over the total predicted positive.

Precision =
TP

TP + FP
(5.2)

The recall reported in equation 5.3 represents the percentage of the duplicates correctly
classi�ed by the algorithm.

Recall =
TP

TP + FN
(5.3)

F-score represents a weighted average of precision and recall, as expressed in equation 5.4.
It is useful when the system is unbalanced, and the accuracy cannot be used.

F − Score =
2 ∗ (Recall ∗ Precision)

Recall + Precision
(5.4)

To �nd the con�guration for the algorithm that outperforms in duplicate detection, four
cases are created to combine sorting metrics and duplicate detection function. Besides,
an evaluation of the starting size of the window is executed in each developed case.

5.1 Place Name Sorting with string similitude detection

The �rst combination taken into consideration is to sort the data alphabetically and
detect duplicates based on the name similarity without considering the coordinates. In
this scenario, four similarity metrics are used and compared: Ratcli�-Obershelp, Jaro-
Winkler, Jaccard, and Levenshtein.For each similarity used, di�erent threshold values of
similarity are used to detect the duplicate. The algorithm �rst computes the similarity
distance, then following equation 5.5, returns true if the two elements are duplicates,
false otherwise. {

True if distance > Φ

False if distance ≤ Φ
(5.5)

The evaluation of each metric is presented individually in terms of precision, recall, and F-
score to evaluate the di�erent starting values of the window size. In the end, the similitude
metrics are compared to select the most accurate in terms of F-Score.

The �rst case taken into consideration is the Ratcli�-Obershelp metrics, in �gure 5.1 is
reported the evolution of the precision for di�erent windows size. The X-axis contains
the di�erent threshold values, and the Y-axis contains the precision value Φn instead.
The precision follows an upward trend, without any di�erence between the size of the
windows when considering a threshold between 0.95 and 1, where 1 represents the exact
similitude. Between 0.9 and 0.95, the size of the windows win equal to 7 performs a

54

5.1 � Place Name Sorting with string similitude detection

little bit better, but in general, they perform the same. When considering the lowest
threshold, the algorithm performs di�erently based on the initial window size. This last
case considers as duplicates strings that have a similarity higher than 80%, so the number
of false-positive FP increases according to the initial window size.

Figure 5.1: Precision of the Ratcli�-Obershelp similitude metrics.

The recall of the Ratcli�-Obershelp is shown in �gure 5.2, it uses the same reference
system with thresholds Φn on the x-axis and precision on the y-axis, and the di�erent size
of the window win is reported on the chart.

Figure 5.2: Recall of the Ratcli�-Obershelp similitude metrics.

55

Result Analysis

The worst recall performances are reached with the smallest initial size of the window.
For all the window sizes, the recall has a downward trend. Some di�erences between the
size of the window can be seen at the lowest threshold Φn, with recall varying between
the 0.79 and 0.81. However, in general, the windows between 3 and 7 have the same
performance in terms of recall.

F-score, in �gure 5.3, takes into consideration both recall and precision. High F-score
means a high number of duplicate detected and correctly labeled. As might be expected,
the performance whit window size equal to 2 is less than 0.7 since its recall was low. The
trend is decreasing, and when considering thresholds higher than 0.9, the window size
does not a�ect the performances. The initial size of the window equal to 3 outperforms
in all the metrics when the threshold is set to 0.8.

Figure 5.3: F-Score of the Ratcli�-Obershelp similitude metrics.

Jaro-Winkler precision varies a lot using di�erent thresholds, as described in �gure 5.4,
passing from less than 20% to 100% when using the exact similarity. The window size
that performs better with all the threshold is 2, reached by the other when the threshold
Φn is higher than 0.95. It has the same reference system of the previous metric and follows
an upward trend.

Regarding the recall presented in �gure 3, the window with size win equal to 2 performs
better whit a threshold Φn of 0.8, but never reaches a recall higher than 55%. The
windows having size between 3 and 7 follow the same trend, reaching the maximum with
a threshold equal to 3 and then decrease as the threshold increases.

Since both the recall and the precision of the Jaro-Winkler metric vary considerably
using di�erent threshold Φn, the F-Score in �gure 5.6, reports a high variation in the
performance between 25% and 90%. Of course, the trend of win equal to 2 dissociates
from the other sizes of windows, performing better with a threshold less than 0.85 and
worst otherwise. The window with size equal to 3 has the best performance until the

56

5.1 � Place Name Sorting with string similitude detection

Figure 5.4: Precision of the Jaro-Winkler similitude metrics.

Figure 5.5: Recall of the Jaro-Winkler similitude metrics.

threshold equal to 0.95, and then it follows the same trend of window size between 4 and
7. Compared to the Ratcli�-Obershelp metric, Jaro-Winkler needs a higher threshold to
have performance similar to it.

57

Result Analysis

Figure 5.6: F-Score of the Jaro-Winkler similitude metrics.

Between all the similarity metrics used in the project, the Levenshtein one is the slowest
and the one less a�ected by the window size. The precision reported in �gure 5.7, is very
high between 95% and 100%. The windows with size 3, 4, 5, and 6 follow the same trend,
in fact, in the chart are overlapped, and only win equal to 6 is visible. The window having
size equal to 7 has the lowest performance with a threshold Φn equal to 0.8, but increasing
the threshold, it performs exactly like the other.

Figure 5.7: Precision of the Levenshtein similitude metrics.

Figure 5.8 reports the recall of the Levenshtein metrics based on di�erent initial size of the

58

5.1 � Place Name Sorting with string similitude detection

window. Like the recall of Jaro-Winkler, the window with size equal to 2 has the worst
performance lower than 70%. The other size of the windows follows the same decreasing
trend, with an overlap with the window between 3 and 6 that performs better with the
threshold Φn equal to 0.8.

Figure 5.8: Recall of the Levenshtein similitude metrics.

F-score, shown in �gure 5.9, is very similar to the recall in chart 5.8. It presents the
window with win equal to 2 at the bottom with an F-Score less than 70%, and the other
window having size between 3 and 7 following the same descending trend explained for
the recall before.

Figure 5.9: F-Score of the Levenshtein similitude metrics.

59

Result Analysis

To evaluate the Jaccard metric �rst was considered the threshold range from 0.8 to 1,
but since neither the size of the windows win and the threshold Φn did not in�uence
the performance, the range was extended until 0.5. Figure 5.10, reports the precision of
the Jaccard similarity metric using the extended threshold range. The precision has an
upward trend until a threshold of 0.8 where it reaches its maximum precision of 100%.
In the extended range, the window with size win equal to 7 is the one with the worst
performance reaching a precision of 90%.

Figure 5.10: Precision of the Jaccard similitude metrics.

Figure 5.11: Recall of the Jaccard similitude metrics.

60

5.2 � Coordinates Sorting with euclidean distance detection

The recall of Jaccard is reported in �gure 5.11 with a downward trend reaching the local
minimum with a threshold Φn higher than 0.8. As already seen with the previous two
metrics, the window with size equal to 2 has the worst recall performance, diverging
from the other values. The F-Score in �gure 5.12, agrees with the recall, having the
worst performance with win equal to 2. The best performance, instead, is reached with
a threshold of 0.6 using a window size between 3 and 6.

Figure 5.12: F-Score of the Jaccard similitude metrics.

All the similarity metric can reach an accuracy above 85%, and any of them can be used
with a speci�c value of the size of the window win and threshold Φ. Between all the
metrics, the Levenshtein is too slow and can be discarded since it performs like the other.
Jaro-Winkler is the metrics that vary the most, in the range of threshold from 0.8 to
1. The Jaccard metrics perform better with very small threshold, the Ratcli�-Obershelp
peforms better with threshold near 0.8.

5.2 Coordinates Sorting with euclidean distance detection

The second evaluation is done taking into consideration the other extreme case, sorting the
dataset and detecting duplicates based on the increasing distance between the coordinates
of the point of interest. In this scenario does not vary the metric to calculate the distance
between points, but, as before, the window's size and the threshold vary to select the
best combination of them. The window's size win can vary between 2 and 7. The
threshold values Φc considered starts from the exact correspondence where the two points
are overlapped until a distance beyond 0.001. The precision of this method, reported in
�gure 5.13, has a downward trend as expected. Increasing the area where two points are
considered duplicates, it is more likely to found false-positive pairs. It was impossible to

61

Result Analysis

utilize only the exact match because di�erent users inserting the same point of interest
can insert coordinates slightly di�erent. The x-axis contains the threshold values Φc, and
the y-axis contains the precision instead.

Figure 5.13: Precision of the Euclidean Distance.

The motivation behind the choice to increase the search area of duplicates is better ex-
plained considering the recall performance in �gure 5.14. Using the distance equal to 0,
the duplicates recognized are between 20% and 25%. With a higher threshold, the number
of duplicates detected increases but at the expense of precision.

Figure 5.14: Recall of the Euclidean Distance.

62

5.3 � Place Name Sorting with combined duplicates detection

In �gure 5.15, the F-Score underlines what said before; in fact, with a threshold Φc

of 0.001, the accuracy is approximately 45% meanwhile it rises above the 55% with a
threshold of 0.00025. The window's size that has the worst performance is the one with
size 2 like in the cases presented in section 5.1. Since with this method, the accuracy
reached is very low, the combination of the two di�erent methods is inserted.

Figure 5.15: F-Score of the Euclidean Distance.

5.3 Place Name Sorting with combined duplicates detection

To achieve better accuracy and take into consideration both discriminating factors of name
and coordinates, it was introduced a combined method to detect duplicates. The �rst one
reported sorts the dataset alphabetically, still considers di�erent window's size and two
di�erent thresholds, Φc for the coordinates and Φn for the name. The combination of
threshold is expressed in equation 5.6.{

True if distanceN > Φn and distanceC < Φc

False otherwise
(5.6)

The results report the accuracy of the method through F-Score, and they are divided
by similarity metrics used and threshold Φc. The threshold Φc to evaluate the Euclidean
distance is incremented by an order of measurement for each evaluation. Reach a threshold
Φc of 0.01 is made possible by the combination of the two metrics because without the
insertion of the similarity metric, the accuracy of the model presented in �gure 5.15
decreases from 45% to 30%. Figure 5.16 presents the F-Score of the Jaccard similarity
metric for a threshold Φc of 0.001. Based on �gure 5.12 the model should reach the

63

Result Analysis

best performance with a window's size win from 3 to 6, but the combination with the
Euclidean distance allows the window with size 7 to perform better. As expected, the
better performance is reached with a small threshold Φn.

Figure 5.16: F-Score with threshold of 0.0001 Jaccard similarity metric.

Figure 5.17: F-Score with a �xed threshold Φc of 0.001 Jaccard similarity metric.

With a threshold Φc of 0.001, reported in �gure 5.17, the behavior expressed before is
repeated, reaching the best F-Score performance with a threshold Φn of 0.5 and a window's
size win of 7. The accuracy increases from 50% to 75% only with the increment of one
order of measurement of the threshold Φc. In �gure 5.18, there is another increment of
the 10% from the F-Score always with a window's size win equal to 7 and a threshold Φn

of 0.5.

Figure 5.19 reports the F-Score of the Jaro-Winkler similarity metric for a threshold Φc of
0.0001. Based on �gure 5.6, Jaro-Winkler metrics perform better for a high threshold of
Φn, but here the better performance is reached with a threshold Φn equal to 0.8. With this
threshold, the most performing window's size win should be the one equal to 3 according
to �gure 5.6, but like the previous case, the best window's size win is equal to 7.

64

5.3 � Place Name Sorting with combined duplicates detection

Figure 5.18: F-Score with a �xed threshold Φc of 0.01 Jaccard similarity metric.

Figure 5.19: F-Score with a �xed threshold Φc of 0.0001 Jaro-Winkler similarity metric.

Figure 5.20: F-Score with a �xed threshold Φc of 0.001 Jaro-Winkler similarity metric.

65

Result Analysis

When setting the threshold Φc to 0.001, the F-Score increases from 50% to almost 80%.
In this case, also the best threshold Φn changes from 0.8 to 0.85, as reported in �gure
5.20. Figure 5.21, with a threshold Φc equal to 0.01 regarding the F-Score performance,
is in accordance with �gure 5.6. The best performance is reached with a threshold Φn

of 0.95 and a window's size win equal to 7. Compared to the previous case using the
Jaccard metric, this combination performs better reaching an F-Score near 90%

Figure 5.21: F-Score with a �xed threshold Φc of 0.01 Jaro-Winkler similarity metric.

Ratcli�-Obershelp is evaluated to select the best con�guration to reach higher F-Score.
Figure 5.22 reports the F-Score with a �xes threshold of Φc of 0.0001. The higher F-Score
is reached with a threshold Φn of 0.8 as can be expected following �gure 5.22, but the
best window's size win is always 7 in contrast with �gure 5.3, where it is equal to 3. Also,
with a threshold Φc equal to 0.001, the best performance is reached with a window's size
of 0.8 and threshold Φn of 0.8, as shown in �gure 5.23. Here the F-Score increases from
50% to 75%.

Figure 5.22: F-Score with a �xed threshold Φc of 0.0001 Ratcli�-Obershelp similarity metric.

66

5.3 � Place Name Sorting with combined duplicates detection

Figure 5.23: F-Score with a �xed threshold Φc of 0.001 Ratcli�-Obershelp similarity metric.

Figure 5.24 reports the F-Score with a threshold Φc of 0.01 that reaches the maximum F-
Score within the Ratcli�-Obershelp metric. The threshold Φn selected is equal to 0.85, and
the window's size win can be one between 4 to 6 because they reach the same performance.

Figure 5.24: F-Score with a �xed threshold Φc of 0.01 Ratcli�-Obershelp similarity metric.

To summarize the performance of the duplicate detection based on the alphabetically
sorted dataset, it is clear that using a threshold Φc of 0.0001, the algorithm that performs
best is the one using the Jaro-Winkler and a threshold Φn of 0.8. When considering a
threshold Φc of 0.001, the Jaro-Winkler metric is still the best with a threshold Φn of
0.85 and a window's size win equal to 7. The best performance for this con�guration is
obtained with a threshold Φc of 0.01 with all the di�erent similarity metrics used, but the
best one is the Ratcli�-Obershelp with an F-Score of 88.83% followed by the Jaro-Winkler
with 88.26%. The best con�guration is achieved with a threshold Φn of 0.85 and a window
with a size win equal to 6.

67

Result Analysis

5.4 Coordinates Sorting with combined duplicates detection

The last con�guration tried to achieve the best performance is the duplicate detection
algorithm sorts the dataset based on the distance between the coordinates of the point
of interest. The duplicate detection combines the coordinates distance and the similarity
metrics applied to the name of the point of interest following equation 5.6. The same
schema used for section 5.3 is used here, blocking the threshold Φc and let vary the
window's size and the threshold Φn.

Figure 5.25 reports the F-Score of the Jaccard metric with a threshold Φc equal to 0.0001.
The best con�guration is achieved with a threshold Φn of 0.6, contrary to �gure 5.16,
where the best performance is reached with a threshold Φ of 0.5. This con�guration
agrees with the one in �gure 5.9 because they both reach the maximum at Φn equals to
6%.

Figure 5.25: F-Score with a �xed threshold Φc of 0.0001 Jaccard similarity metric.

Figure 5.26: F-Score with a �xed threshold Φc of 0.001 Jaccard similarity metric.

In �gure 5.26 is described the F-Score with threshold Φc of 0.001 that performs better with

68

5.4 � Coordinates Sorting with combined duplicates detection

a threshold Φn of 0.5 like the previous con�guration. In this case, there is an abnormality
with the threshold Φn equals to 0.7, where the F-Score dizzying decreases from the average
70% to less than 50%.

Like the case presented in section 5.3, the con�guration with a threshold Φc equals to
0.01reported in �gure 5.27, is the one that performs better with the Jaccard metrics
reaching an F-Score of 85%. This result is obtained with a window's size win of 7 and
threshold Φn of 0.8.

Figure 5.27: F-Score with a �xed threshold Φc of 0.01 Jaccard similarity metric.

F-Score of the Jaro-Winkler metric with a threshold Φc of 0.0001 is reported in �gure
5.28. Like the case presented in the previous section in �gure 5.19 the best con�guration
is achieved with a threshold Φn equals to 0.8, but here, the window's size win can be
chosen between 4, 5, 6 and 7.

Figure 5.28: F-Score with a �xed threshold Φc of 0.0001 Jaro-Winkler similarity metric.

Selecting a threshold Φc equals to 0.001, the best con�guration to achieve a higher F-Score
is presented in �gure 5.29 and includes a threshold Φn equals to 0.85 and a window with
size win of 7 like the case in �gure 5.20.

69

Result Analysis

Figure 5.29: F-Score with a �xed threshold Φc of 0.001 Jaro-Winkler similarity metric.

Figure 5.30: F-Score with a �xed threshold Φc of 0.01 Jaro-Winkler similarity metric.

The di�erence between the case reported in �gure 5.21 and the F-Score described here
in �gure 5.30 it presents with a threshold Φc of 0.01. Since in �gure 5.21, the best
con�guration contains the threshold Φn of 0.95, and here the best one is found when the
threshold Φn is equal to 0.9. Like the case presented in section 5.3, the Jaro-Winkler
metric reaches the higher performance with a threshold Φc of 0.01, where the F-Score is
equal to 86.40%, but the best con�guration for this metric is still the one presented in
section 5.3.

Figure 5.31 reports the F-Score of the Ratcli�-Obershelp similarity metric with a threshold
Φc of 0.0001. The best con�guration is precisely the same as �gure 5.22, with a window's
size win of 7 and a threshold Φn of 0.8. Also, for the case with a threshold Φc equals to
0.001 in �gure 5.32, there are no changes compared to �gure 5.23 since the best choice is
still win equals to 7 and Φn equals to 0.8.

Like the case presented in section 5.3, Ratcli�-Obershelp performs better using a threshold
Φc equal to 0.01, as presented in �gure 5.33. The best con�guration is achieved with a

70

5.4 � Coordinates Sorting with combined duplicates detection

Figure 5.31: F-Score with a �xed threshold Φc of 0.0001 Ratcli�-Obershelp similarity metric.

Figure 5.32: F-Score with a �xed threshold Φc of 0.001 Ratcli�-Obershelp similarity metric.

Figure 5.33: F-Score with a �xed threshold Φc of 0.01 Ratcli�-Obershelp similarity metric.

71

Result Analysis

window's size win of 7 and a threshold Φn of 0.9 unlike the case in �gure 5.24 where the
best threshold Φn was equal to 0.85.

Between all the di�erent combinations of sorting methods and duplicate detection func-
tions, the worst in terms of performance is reported in section 5.2, where the dataset
is sorted based on the coordinate's distance, and it also uses the coordinate's distance
to detect duplicates, reaching an F-Score of 55%. Tho other combinations reach all an
F-Score between 85% and 90%. In the end, the best combination proves to be the one
with the dataset alphabetically sorted where the duplicate detection function uses both
the Euclidean distance and the Ratcli�-Obershelp similarity metric. The con�guration
for the thresholds and the window's size is the one presented in �gure 5.33 having the
window's size win of 7, the threshold Φn of 0.9, and the threshold Φc equal to 0.01. This
con�guration has 0 false-positive, so at the end, the point of interest fused will not contain
points of interest that are not duplicates.

72

Chapter 6

Conclusion and Future works

The data fusion algorithm developed in this project �ts in the three-step algorithms
domain. The schema matching phase deals with three di�erent datasets: user inserted
data, Wikidata query results, and dataset maintained by Turin city hall. The algorithm
has to deal with di�erent standards and representations in this phase; to do so, it selects
the schema created for the user inserted data and modify the data accordingly. Duplicate
detection phase follows the principles of DCS++, an algorithm that sorts the dataset
based on a sorting key and compares the data with a windowing method. The additional
con�guration parameters selected for the duplicate detection algorithm are based on the
evaluation reported in chapter 5. The con�guration selected contains a dataset sorted
alphabetically with a duplicate detection function considering both string similarity and
Euclidean distance. Speci�cally, it uses the Ratcli�-Obershelp similarity metric with a
threshold Φn equals to 0.9, a threshold Φc equals to 0.01 for the Euclidean distance and
a window with size win equal to 7. The last phase of the algorithm follows a con�ict-
resolution strategy with the selection of a Gold standard to select the leading information
from the most truthful source. Additionally, it implements a quorum strategy to integrate
and validate the data inserted by the users.

With the algorithm presented here, the weighted accuracy F-Score achieved is about 89%
without any false positive detected. It is a good approximation for the project goal that
has been fully respected since the algorithm validates the data inserted by the users,
integrates data coming from di�erent sources, and increases the quality of the data used
in the project. It should be clari�ed that this solution is not the perfect one reaching an
F-Score of 100%, but for the thesis scope, it reaches an acceptable value. Another point
of weakness is the quorum threshold selected because it was selected empirically without
appropriate evaluations due to lack of time.

Further works can be done searching di�erent con�guration for the duplicate detection
phase to reach a higher accuracy, or selecting a new duplicate detection algorithm. If
the data inserted in the application grows exponentially should be good to implement a
machine learning algorithm, since the amount of data now available is not large enough
to require the use of machine learning.

73

Bibliography

[1] I. R. Goodman, Ronald P. S. Mahler, Hung T. Nguyen,�Mathematics of data fusion�,
Springer-Science

[2] H. F. Durant-Whyte, �Sensor models and multisensor integration�, International Ju-
rnal of Robotic Research, Vol. 7, No. 6 ,pp. 97-113, 1988.

[3] Federico Castanedo, �A Review of Data Fusion Techniques�, The Scienti�c World
Journal.

[4] B. V. Dasarathy, �Sensor fusion potential exploitation-innovative architectures and
illustrative applications�, Proceding of the IEEE, Vol. 85, No. 1, pp. 24-38, 1997.

[5] R. C. Luo, C.-C. Yih, K. L. Su, �Multisensor fusion and integration:approaches,
application, and future research directions�, IEEE Sensors Jurnal, Vol. 2, No. 2,
pp. 107-199, 2002.

[6] �JDL�, Data Fusion Lexicon. Technical Panel For C3, F.E. White, San Diego, Cali-
fornia, USA, Code 4 20, 1991.

[7] S. Bergamaschi, S. Castano, M. Vincini, �Semantic Integration of Semistructured and
Structured Data Sources�, SIGMOD Record, Vol. 28, pp. 54-59, 1999.

[8] L. Palopoli, G. Terracina, D. Ursino, �The system DIKE: Towards the Semi-
Automatic Synthesis of Cooperative Information System and Data Warehouses�,
ADBIS-DASFAA, pp. 108-117, 2000.

[9] J. Madhavan, P.A. Bernstein, E.Rham, �Generic schema matching with Cupid�, Pro-
ceeding of the International Conference on Very Large Databases(VLDB), Rome,
Italy, 2001.

[10] E. Rahm, P. A. Bernstein, �A Survey of approaches to automatic schema matching�,
VLDB Journal, Vol. 10, No. 4, pp. 334-350, 2001.

[11] A. Skandar, M. Pehman, M. Anjum, �An E�cient Duplication Record Detection
Algorithm for Data Cleansing�, Internationa Journal of Computer Applications(0975-
8887), Vol. 127, No. 8 , October 2015.

[12] M. Rehman, V. Esichaikul,�Duplicate record detection for database cleansing� in
Machine Vision, ICMV'09. Second International Conference, Dubai 2009, pp. 333-
338.

75

Bibliography

[13] A. Galland, S. Abiteboul, A. Marian, P.Senellart, �Corroborating information from
disagreeing views�, 3rd ACM International Conference on Web Search and Data Min-
ing (WSDM), February 2010, pp. 131-140.

[14] X. L. Dong, L. Berti-Equille, D. Srivastava, �Data fusion: Resolving con�icts from
multiple sources�, Web-Age Information Management (WAIM), 2013, pp. 64-76.

[15] Pablo N. Mendes, Hannes Mühleisen, Christian Bizer, �Slieve: Linked Data Qual-
ity Assesment and Fusion�, Proceedings of the 2012 Joint EDBT/ICDT Workshops
pp. 116-123, ACM.

[16] http://ldif.wbsg.de/

[17] Jens Bleiholder, Felix Naumann, �Data Fusion�, ACM computing surveys (CSUR),
Vol. 41, No. 1, pp. 1-41, 2009.

[18] M. Hernández, S. Stolfo, �The merge/purge problem for large databases�, Proceeding
of the ACM SIGMOD International Conference on Management of Data, pp. 127-
138, May 1995.

[19] U. Draisbach, F. Naumann, S. Szott, O. Wonneberg, �Adaptive Windows for Du-
plicate Detection�, International Conference on Data Engineering (ICDE), IEEE,
pp. 1073-1083, 2012.

[20] Alvaro E. Monge, �Matching Algorithms within a Duplicate Detection System�, IEEE
Data Eng. Bull., Vol. 23, No. 4, pp. 14-20, 2009.

[21] D. Draper, A. Y. Halevy, D. S. Weld, �The Nimble XML data integration system�,
Proceeding of the International Conference on Data Engineering(ICDE), IEEE Com-
puter Society, pp. 155-160, 2001b.

[22] R. Ahmed, P. De Smedt, W. Du, W. Kent, M. A. Ketabchi, W. A. Litwin, A.
Ra�i, M.-C. Shan, �The Pegasus Heterogeneus multidatabase system�, IEEE Com-
put., Vol. 24, No. 12, pp. 19-27, 1991.

[23] C. Collet, M. N. Huhns, W.-M. Shen, �Resource integraation using a large knowledge
base in Carnot�, IEEE Comput., Vol. 24, No. 12, pp. 55-62, 1991.

[24] R. J. Jr. Bayardo, W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikr-
ishnan, A. Unruh, D. Woelk, �InfoSleuth: Agent-Based semantic integration of in-
formation in open and dynamic environments�, Proceeding of the ACM International
Conference on Management of Data SIGMOD, ACM Press, New York, pp. 195-206,
1997.

[25] J. Hammer, J. McHugh, H. Garcia-Molina, �Semistructured data: The TSIMMIS
experience.�, Proceeding of the East European Conference on Advances in Databases
and Information Systems (ADBIS), pp. 1-8, 1997.

[26] J. L. Ambite, C. A. Knoblock, I. Muslea, A. G. Philpot, �Compiling source descrip-
tions for e�cient and �exible information integration�, J. Intell. Inf. Syst., Vol. 16,
No. 2, pp. 149-187, 2001.

76

Bibliography

[27] N. Leone, G. Greco, G. Ianni, V. Lio, G. Terracina, T.Eiter, W. Faber, M. Fink,
G. Gottlob, R.Rosati, D. Lembo, M. Lenzerini, M. Ruzzi, E. Kalka, B. Nowiciki,
W. Staniszkis, �The INFOMIX system for advanced integration of incomplete and
inconsistent data.�, Proceeding of the ACM International Conference on Management
of Data SIGMOD, pp. 915-917, 2005.

[28] U. Dayal, �Processing queries over generalization hierarchies in a multidatabase sys-
tem�, Proceeding of the International Conference on Very Large Database (VLDB),
pp. 342-353, 1983.

[29] A. Bilke, J. Bleiholder, C. Böhm, K. Draba, F. Naumann, M. Weis, �Automatic data
fusion with HumMer�, Proceedings of the International Conference on Very Large
Databases (VLDB), pp. 1251-1254, 2005.

[30] V. S. Subrahmanian, S. Adali, A. Brink, R. Emery, J. Lu, A. Rajput, T. Rogers, R.
Ross, C. Ward, �Hermes: a heterogeneous reasoning and mediation system�, Tech.
Rep., University of Maryland, 1995.

[31] https://www.techeconomy.it/2016/03/25/openstreetmap-e-google-maps/

[32] https://developers.google.com/maps/documentation/javascript/

[33] https://sequelize.org/master/

[34] https://en.wikipedia.org/wiki/OpenStreetMap

[35] N. Borolea, D. Routa, N. Goela, Dr. P. Vedagirib, Dr. Tom V. Mathewb, �Multimodal
Public Transit Trip Planner with Real-Time Transit Data �, Procedia - Social and
Behavioral Sciences, No. 104 , 2013, pp. 775 � 784

[36] https://beyondtransparency.org/chapters/part-2/pioneering-open-data-standards-
the-gtfs-story/

[37] https://github.com/CanalTP/navitia/wiki/OpenTripPlanner-and-Navitia-
comparison

[38] https://www.predictiveanalyticstoday.com/google-public-data-explorer/

[39] https://aperto.comune.torino.it

[40] https://data.europa.eu/euodp/en/data/

[41] https://facebook.github.io/�ux/

[42] https://www.wikidata.org/wiki/Wikidata:Introduction

[43] https://en.wikipedia.org/wiki/DBpedia

[44] https://www.istat.it/it/archivio/236148

[45] https://developer.apple.com/documentation/mapkit

[46] https://www.bingmapsportal.com/

[47] https://en.wikipedia.org/wiki/Object-relational_mapping

77

Bibliography

[48] https://en.wikipedia.org/wiki/Client%E2%80%93server_model

[49] https://searchapparchitecture.techtarget.com/de�nition/RESTful-API

[50] https://en.wikipedia.org/wiki/Representational_state_transfer

[51] https://medium.com/of-all-things-tech-progress/understanding-mvc-architecture-
with-react-6cd38e91fefd

[52] https://medium.com/mofed/react-redux-architecture-overview-7b3e52004b6e

[53] https://reactjs.org/

[54] https://en.wikipedia.org/wiki/React_(web_framework)

[55] https://www.html.it/guide/react-la-guida/

[56] https://reacttraining.com/react-router/web/guides/quick-start

[57] https://redux.js.org/api/api-reference

[58] https://medium.com/the-web-tub/managing-your-react-state-with-redux-
a�ab72de4b1

[59] http://expressjs.com/en/api

[60] https://nodejs.org/en/docs/

[61] https://nodejs.dev

[62] https://www.postgresql.org/docs/

[63] https://lea�etjs.com/reference-1.6.0.html

78

https://en.wikipedia.org/wiki/React_(web_framework)

	List of Tables
	List of Figures
	Introduction
	Data Fusion
	Data fusion models
	Three step algorithm
	Schema Matching
	Duplicate Detection
	Data Fusion

	Case Study
	State of the art
	Existing Data Set
	Map creation tools
	Trip planning

	Requirement
	Functional Requirement
	Non Functional Requirement

	Architecture and Design
	Technologies
	System architecture
	Data representation

	Development
	Homepage
	User login
	User Registration
	Token Validation
	Standard user features

	Proposed Solution
	Schema Matching
	Duplicate Detection
	Sorting methods
	Duplicate Detection functions

	Data Fusion

	Result Analysis
	Place Name Sorting with string similitude detection
	Coordinates Sorting with euclidean distance detection
	Place Name Sorting with combined duplicates detection
	Coordinates Sorting with combined duplicates detection

	Conclusion and Future works
	Bibliography

