
Web development

Client-side programming

Rich Internet Applications
and AJAX

/home/corno/Mirror/elite/slide/Computers/Programming/Languages/JavaScript/AJAX/ajax_v1.odp

Rich Internet Application

Rich Internet applications (RIA) are web
applications that have the features and
functionality of traditional desktop
applications.
RIAs typically

transfer the processing necessary for the user
interface to the web client
keep the bulk of the data (i.e., maintaining the
state of the program, the data etc) back on the
application server.

Main goals of RIAs

Most sophisticated RIAs exhibit a look and
feel approaching a desktop environment.

Richer. User-interface behaviors not obtainable
using only the HTML widgets available to
standard browser-based Web applications: drag
and drop, using a slider to change data,
calculations performed by the client and which
do not need to be sent back to the server, ...
More responsive. The interface behaviors are
typically much more responsive than those of a
standard Web browser that must always interact
with a remote server.

Performance of RIAs

Client/Server balance. The demand for
client and server computing resources is
better balanced. This frees server resources,
allowing the same server hardware to handle
more client sessions concurrently.

Performance of RIAs

Asynchronous communication. The client
engine can interact with the server without
waiting for the user to perform an interface
action such as clicking on a button or link.
This allows the user to view and interact with
the page asynchronously from the client
engine's communication with the server.

Example: prefetching (an application anticipates
a future need for certain data, and downloads it
to the client before the user requests it)

Performance or RIAs

Network efficiency. Network traffic may be
significantly reduced because an application-
specific client engine can be more intelligent
than a Web browser when deciding what
data needs to be exchanged with servers.

Less data is being transferred for each
interaction, and overall network load is reduced.
However, use of asynchronous prefetching
techniques can neutralize or even reverse this
potential benefit.

AJAX definition

Asynchronous JavaScript And XML.
AJAX is a type of programming made
popular in 2005 by Google (with Google
Suggest).
AJAX is not a new programming language,
but a new way to use existing standards.
With AJAX you can create better, faster, and
more user-friendly web applications.
AJAX is based on JavaScript and HTTP
requests.

Key enabling technology

With AJAX, your JavaScript can
communicate directly with the server, using
the JavaScript XMLHttpRequest object.
By using the XMLHttpRequest object, a web
developer can update a page with data from
the server -- after the page has loaded!
The XMLHttpRequest object is supported in
Internet Explorer 5.0+, Safari 1.2, Mozilla
1.0 / Firefox, Opera 8+, and Netscape 7.
http://www.w3.org/TR/XMLHttpRequest/

XMLHttpRequest – the name

The name of the object is wrong, but
maintained for historical reasons:

May receive any text-based content, not just
XML
May use also HTTPS, not just HTTP protocol
May handle both Requests and Responses, of
all HTTP methods

Standard definition
interface XMLHttpRequest {
 // event handler
 attribute EventListener onreadystatechange;
 // state
 const unsigned short UNSENT = 0;
 const unsigned short OPENED = 1;
 const unsigned short HEADERS_RECEIVED = 2;
 const unsigned short LOADING = 3;
 const unsigned short DONE = 4;
 readonly attribute unsigned short readyState;

http://www.w3.org/TR/XMLHttpRequest/#onreadystatechange
http://www.w3.org/TR/XMLHttpRequest/#unsent-state
http://www.w3.org/TR/XMLHttpRequest/#opened-state
http://www.w3.org/TR/XMLHttpRequest/#headers-received-state
http://www.w3.org/TR/XMLHttpRequest/#loading-state
http://www.w3.org/TR/XMLHttpRequest/#done-state
http://www.w3.org/TR/XMLHttpRequest/#readystate

Standard definition
 // request
 void open(in DOMString method, in DOMString url);
 void open(in DOMString method, in DOMString url, in boolean async);
 void open(in DOMString method, in DOMString url, in boolean async, in
DOMString user);
 void open(in DOMString method, in DOMString url, in boolean async, in
DOMString user, in DOMString password);
 void setRequestHeader(in DOMString header, in DOMString value);
 void send();
 void send(in DOMString data);
 void send(in Document data);
 void abort();

http://www.w3.org/TR/XMLHttpRequest/#open
http://www.w3.org/TR/XMLHttpRequest/#open
http://www.w3.org/TR/XMLHttpRequest/#open
http://www.w3.org/TR/XMLHttpRequest/#open
http://www.w3.org/TR/XMLHttpRequest/#setrequestheader
http://www.w3.org/TR/XMLHttpRequest/#send
http://www.w3.org/TR/XMLHttpRequest/#send
http://www.w3.org/TR/XMLHttpRequest/#send
http://www.w3.org/TR/XMLHttpRequest/#abort

Standard definition
 // response
 DOMString getAllResponseHeaders();
 DOMString getResponseHeader(in DOMString header);
 readonly attribute DOMString responseText;
 readonly attribute Document responseXML;
 readonly attribute unsigned short status;
 readonly attribute DOMString statusText;
};

http://www.w3.org/TR/XMLHttpRequest/#getallresponseheaders
http://www.w3.org/TR/XMLHttpRequest/#getresponseheader
http://www.w3.org/TR/XMLHttpRequest/#responsetext
http://www.w3.org/TR/XMLHttpRequest/#responsexml
http://www.w3.org/TR/XMLHttpRequest/#status
http://www.w3.org/TR/XMLHttpRequest/#statustext

Request states

UNSENT = 0
The request is not initialized

OPENED = 1
The request has been set up

HEADERS_RECEIVED = 2
The request has been sent

LOADING = 3
The request is in process

DONE = 4
The request is complete

State transition diagram

UNSENT
OPENED
not sent

new
.open()

.setRequestHeader()

.send()

HEADERS
_RECEIVED

All headers
received

OPENED
sent

.send()

LOADINGDONE
not error

(partial) body
receivedConnection closed

DONE
error

Connection closed

XMLHttpRequest properties

onreadystatechange
stores the function that will process the
response from a server
xmlHttp.onreadystatechange =
function() { ... }

readyState
holds the status of the server’s response. Each
time readyState changes, the
onreadystatechange function will be executed.

responseText
the data sent back from the server can be
retrieved with the responseText property

Methods

open(method, url, async, user, password)
method = “GET”, “POST”
url = complete URL to request
async = true/false (optional, default=true)
user, password (optional)
Interrupts any on-going send()

setRequestHeader(header, value)
Adds a new header to the HTTP Request
Content-Type is one common header to send

Examples: text/xml, application/xml

Methods

send(data)
Initiates the request
data = HTTP request body (optional)

May be a Document or DOMString
The URL was already given in open()
send() terminates immediately if async==true,
but transfer continues in the background

Generates readystatechange events
send() transfers data synchronously if
async==false

Methods

getAllResponseHeaders()
Return all response headers as a single string,
with headers separated by CR+LF
Invalid if UNSENT or OPENED

getResponseHeader(header)
Returns the value of a single header
Invalid if UNSENT or OPENED

Receiving the response body

responseText of type DOMString
If LOADING (partial body) or DONE
Allow access to a “raw string” of the response
body

responseXML of type Document
Only if DONE
For text/xml (or application/xml or *+xml) content
types, otherwise null
Allows access to the DOM of the XML document

Example

Create a standard HTML form with two text
fields: username and time.
The username field will be filled in by the
user and the time field will be filled in using
AJAX.
No submit button is needed.

Example

<html>
<body> <form name="myForm">
Name: <input type="text" name="username" />
Time: <input type="text" name="time" />
</form> </body>
</html>

Creating an XMLHttpRequest
object

<script type="text/javascript">
function ajaxFunction()
{
 var xmlHttp;
 xmlHttp=new XMLHttpRequest();

 ...
}
</script>

Supporting all browsers
<script type="text/javascript">
function ajaxFunction()
{
var xmlHttp;
try {
 // Firefox, Opera 8.0+, Safari
 xmlHttp=new XMLHttpRequest();
 }
catch (e) {
 // Internet Explorer
 try { // Internet Explorer 6.0+
 xmlHttp=new ActiveXObject("Msxml2.XMLHTTP");
 }
 catch (e) {
 try { // Internet Explorer 5.5+
 xmlHttp=new ActiveXObject("Microsoft.XMLHTTP");
 }
 catch (e) {
 alert("Your browser does not support AJAX!");
 return false;
 }
 }
 }
}
</script>

Calling the server

xmlHttp.open("GET","time.jsp",true);
xmlHttp.send(null);

Processing the response

xmlHttp.onreadystatechange=function()
{
if(xmlHttp.readyState==4)
 {
 // Get the data from the server's response
 document.myForm.time.value=xmlHttp.responseText;
 }
}

Attaching to an event

<form name="myForm">
Name: <input type="text"
onkeyup="ajaxFunction();" name="username" /
>
Time: <input type="text" name="time" />
</form>

Complete example
<html>
<body>
<script type="text/javascript">
function ajaxFunction()
{
 var xmlHttp=new XMLHttpRequest();

 xmlHttp.onreadystatechange=function()
 {
 if(xmlHttp.readyState==4)
 {
 document.myForm.time.value=xmlHttp.responseText;
 }
 }

 xmlHttp.open("GET","time.asp",true);
 xmlHttp.send(null);
 }
</script>
<form name="myForm">
Name: <input type="text"
onkeyup="ajaxFunction();" name="username" />
Time: <input type="text" name="time" />
</form> </body>
</html>

AJAX architecture

AJAX
behavior

Exercise 1

Create an auto-complete feature for entering
the name in a FORM
For every typed letter, an associated text
must be updated, reflecting the list of all
possible names with those initial(s)
Once submitted, the name adds up to the list
Clicking on the suggestion auto-fills the box

Name Jo Suggestions: Joe, Joseph, John

SUBMIT

Exercise 2

Create a FORM for entering the name of a
city, based on two drop-down menus
(<select> tags).

The first <select> contains the list of all
provinces (AO, BO, CN, MI, TO, ...)
The second <select> contains the list of all cities
in the province

Every time the user changes the province,
then the list of cities MUST be updated
The form may be submitted only if
information is complete

References

http://en.wikipedia.org/wiki/Rich_Internet_Ap
plications
http://en.wikipedia.org/wiki/AJAX
http://www.w3schools.com/ajax/
http://www.w3.org/TR/XMLHttpRequest/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

