

Introduction to Graphs

Tecniche di Programmazione – A.A. 2020/2021

Summary

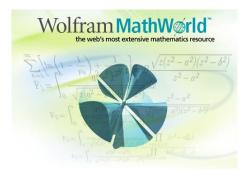
- Definition: Graph
- Related Definitions
- Applications

Definition: Graph

Introduction to Graphs

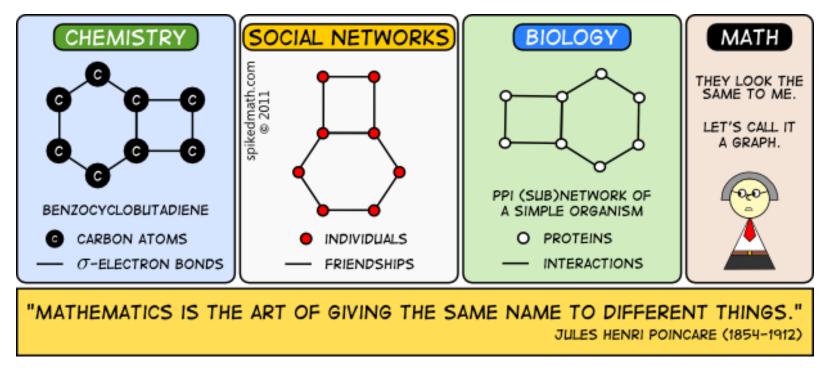
Definition: Graph

- A graph is a collection of points and lines connecting some (possibly empty) subset of them.
- The points of a graph are most commonly known as graph vertices, but may also be called "nodes" or simply "points."
- The lines connecting the vertices of a graph are most commonly known as **graph edges**, but may also be called "arcs" or "lines."



http://mathworld.wolfram.com/

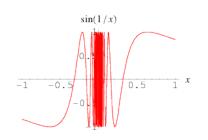
What's in a name?

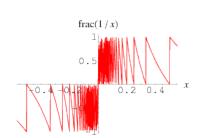


http://spikedmath.com/382.html

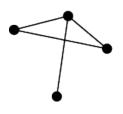
Big warning: Graph ≠ Graph ≠ Graph

Graph (plot) (italiano: grafico)





Graph (maths) (italiano: grafo)

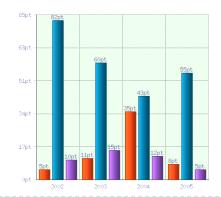


simple graph

nonsimple graph with multiple edges

nonsimple graph with loops

Graph (chart) (italiano: grafico)



History

- The study of graphs is known as **graph theory**, and was first systematically investigated by D. König in the 1930s
- Euler's proof about the walk across all seven bridges of Königsberg (1736), now known as the Königsberg bridge problem, is a famous precursor to graph theory.
- In fact, the study of various sorts of paths in graphs has many applications in real-world problems.

Königsberg Bridge Problem

Can the 7 bridges the of the city of Königsberg over the river Preger all be traversed in a single trip without doubling back, with the additional requirement that the trip ends in the same place it began?

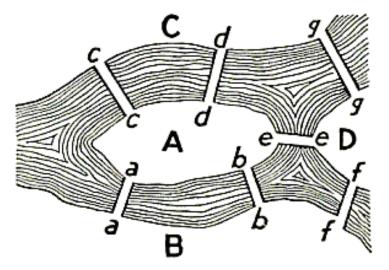


Figure 98. Geographic Map: The Königsberg Bridges.

Today: Kaliningrad, Russia

Königsberg Bridge Problem

Can the 7 bridges the of the city of Königsberg over the river Preger all be traversed in a single

trip with requent begs

NO YOU
CAN'T

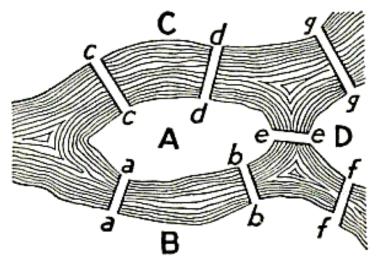
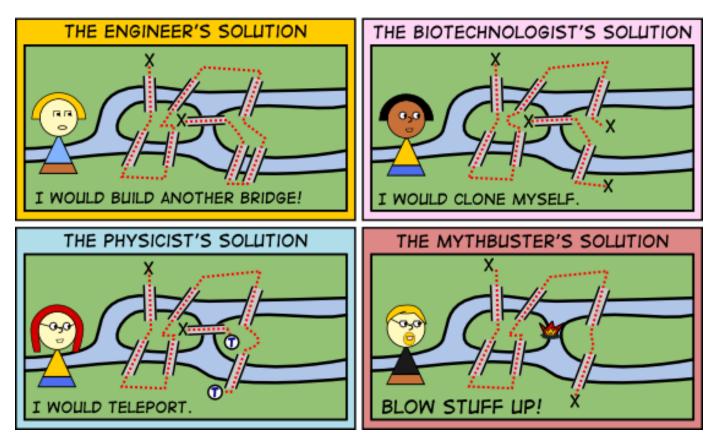


Figure 98. Geographic Map: The Königsberg Bridges.

Today: Kaliningrad, Russia

Unless...



http://spikedmath.com/541.html

Types of graphs: edge cardinality

Simple graph:

 At most one edge (i.e., either one edge or no edges) may connect any two vertices

Multigraph:

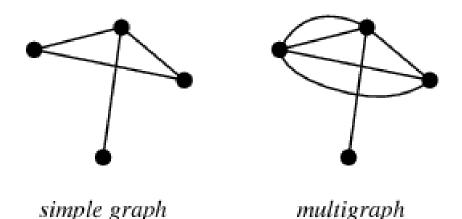
 Multiple edges are allowed between vertices

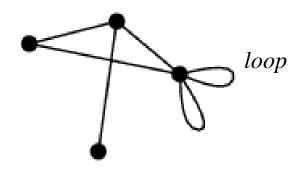
Loops:

Edge between a vertex and itself

Pseudograph:

Multigraph with loops



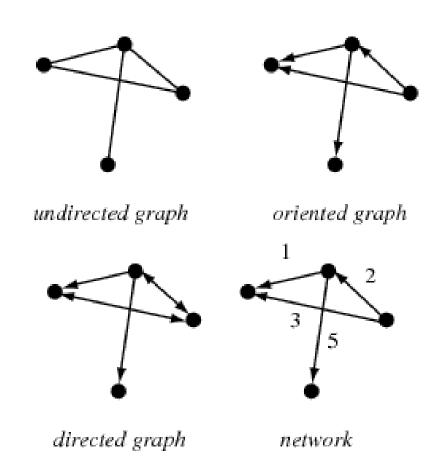


pseudograph

Types of graphs: edge direction

Undirected

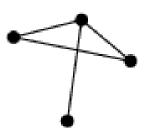
- Oriented
 - Edges have one direction (indicated by arrow)
- Directed
 - Edges may have one or two directions
- Network
 - Oriented graph with weighted edges



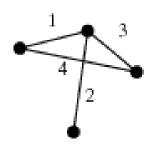
Types of graphs: labeling

Labels

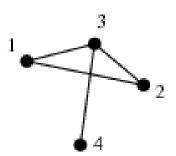
- None
- On Vertices
- On Edges
- Groups (=colors)
 - Of Vertices
 - no edge connects two identically colored vertices
 - Of Edges
 - adjacent edges must receive different colors vertex-colored graph
 - Of both



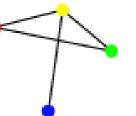
unlabeled graph

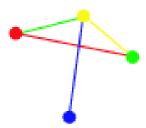


edge-labeled graph



vertex-labeled graph

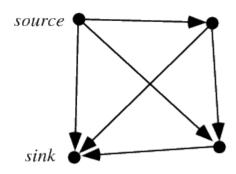


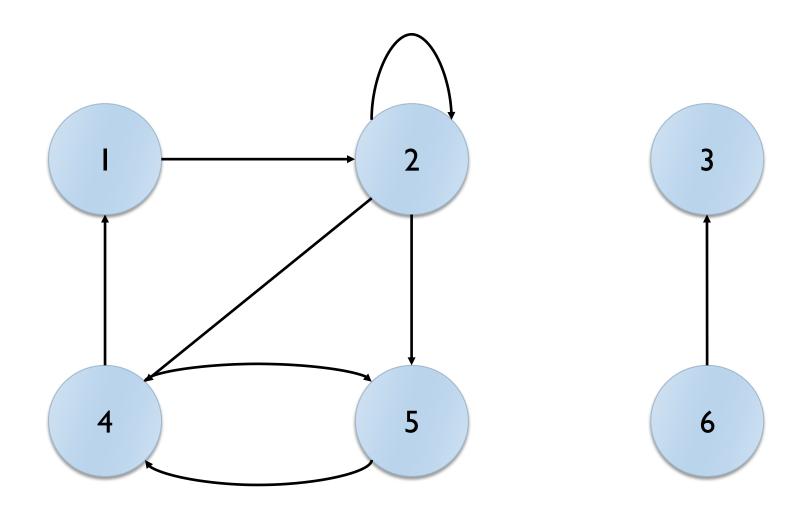


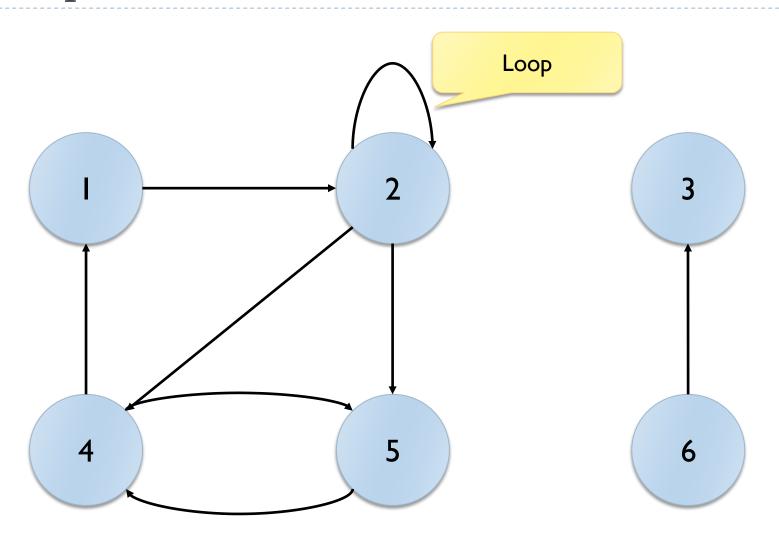
vertex- and edgecolored graph

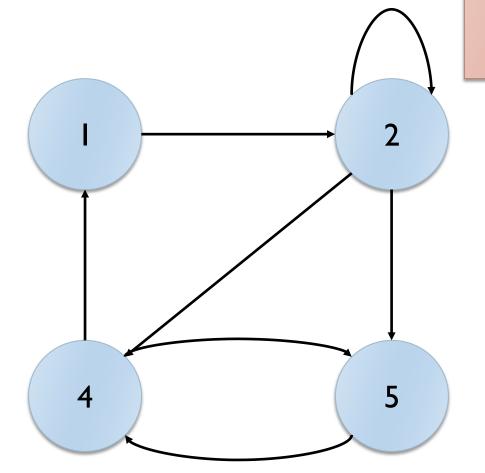
Directed and Oriented graphs

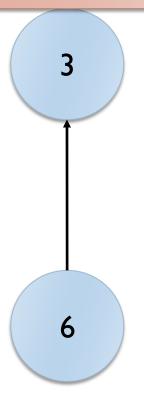
- ▶ A Directed Graph (di-graph) G is a pair (V,E), where
 - V is a (finite) set of vertices
 - E is a (finite) set of edges, that identify a binary relationship over V
 - $E \subseteq V \times V$





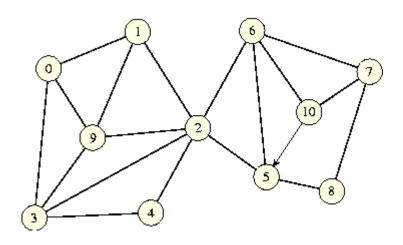






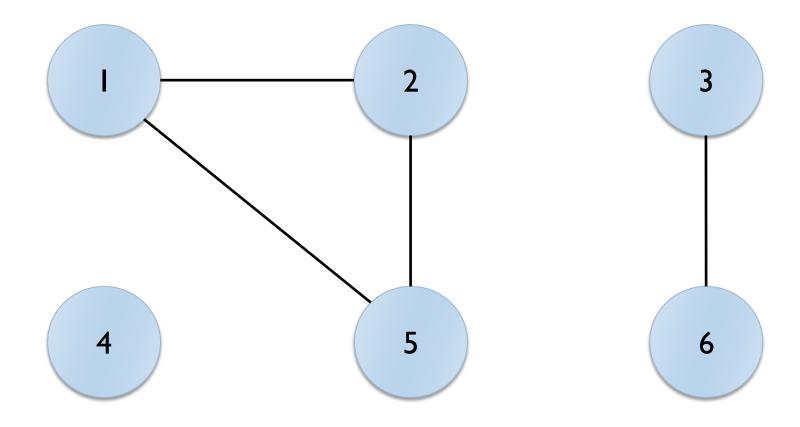
Undirected graph

Ad **Undirected** Graph is still represented as a couple G=(V,E), but the set E is made of **non-ordered pairs** of vertices



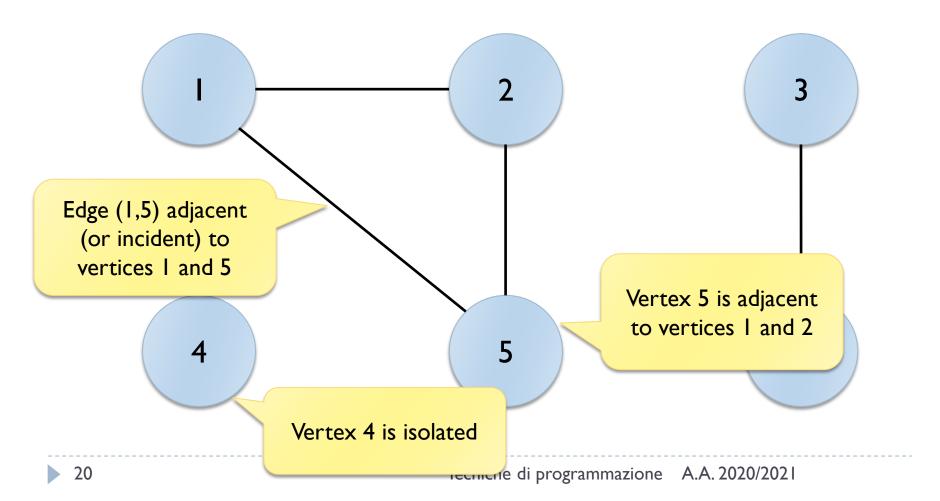
V={1,2,3,4,5,6}

 $E=\{\{1,2\},\{2,5\},\{5,1\},\{6,3\}\}$



V={1,2,3,4,5,6}

 $E=\{\{1,2\},\{2,5\},\{5,1\},\{6,3\}\}$

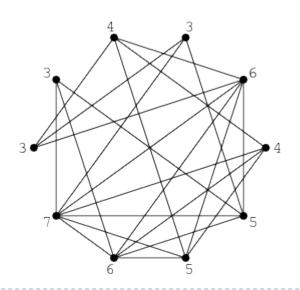


Related Definitions

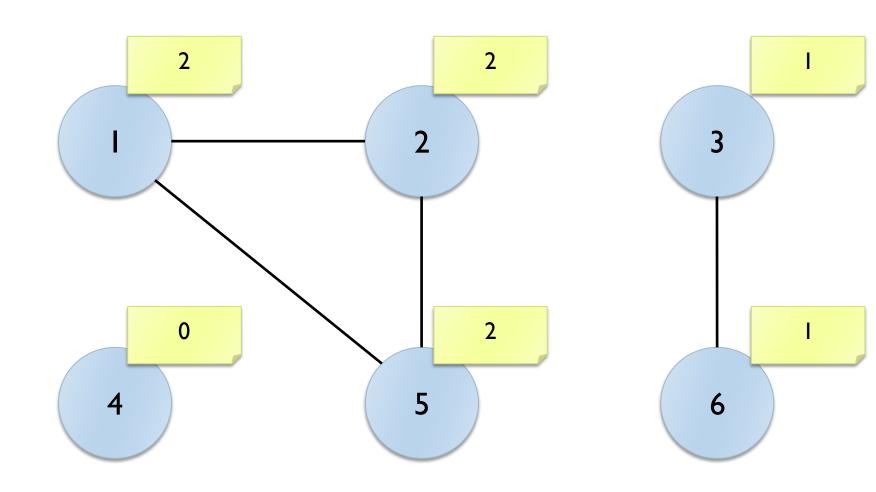
Introduction to Graphs

Degree

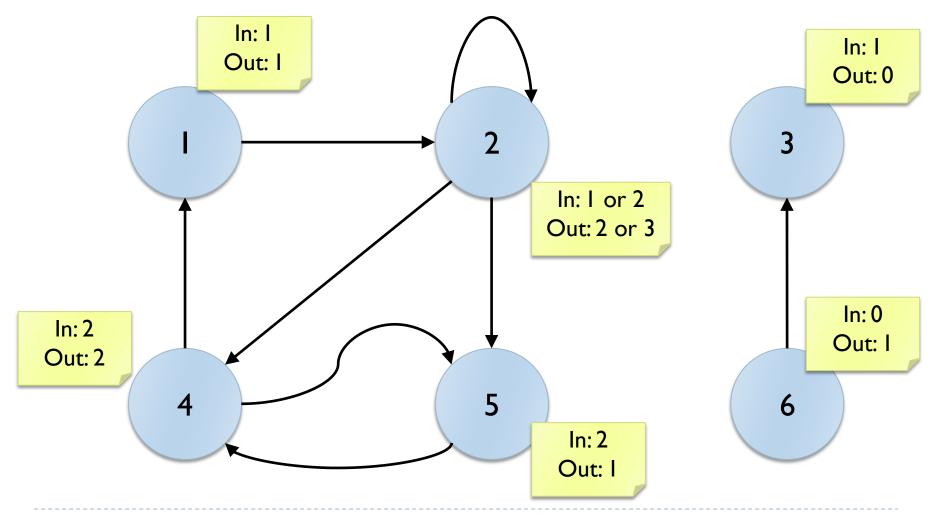
- In an undirected graph,
 - the **degree** of a vertex is the number of incident edges
- In a directed graph
 - ▶ The **in-degree** is the number of incoming edges
 - The **out-degree** is the number of departing edges
 - ▶ The **degree** is the sum of in-degree and out-degree
- ▶ A vertex with degree 0 is **isolated**



Degree

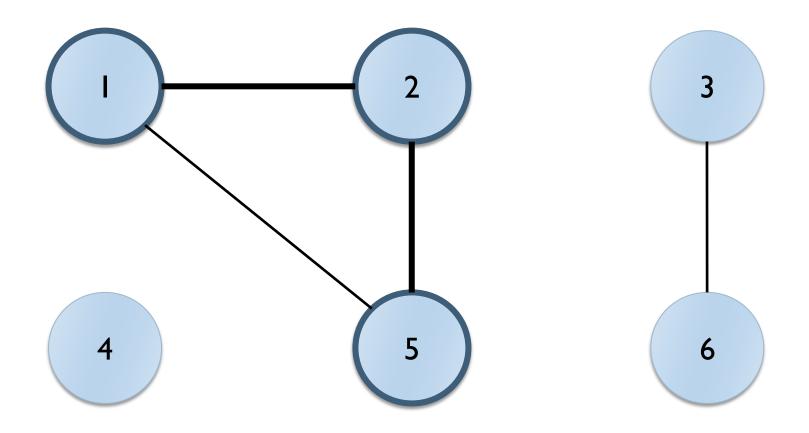


Degree



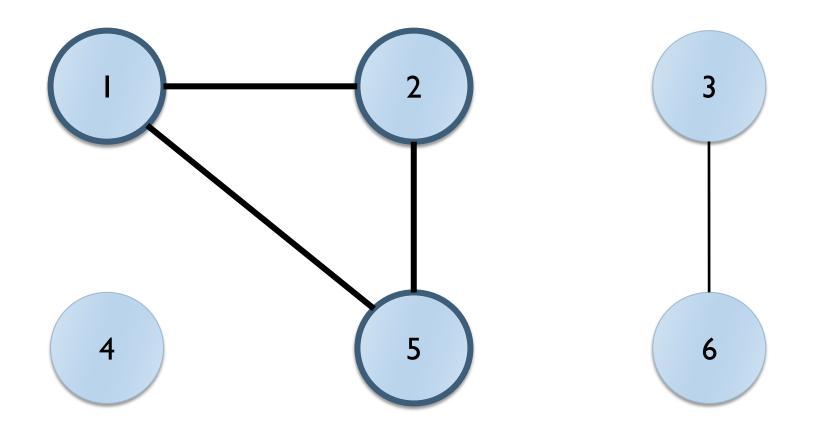
Paths

- A **path** on a graph G=(V,E) also called a trail, is a sequence $\{v_1, v_2, ..., v_n\}$ such that:
 - $v_1, ..., v_n$ are vertices: $v_i \in V$
 - $(v_1, v_2), (v_2, v_3), ..., (v_{n-1}, v_n)$ are graph edges: $(v_{i-1}, v_i) \in E$
 - v_i are distinct (for "simple" paths).
- ▶ The length of a path is the number of edges (n-1)
- If there exist a path between v_A and v_B we say that v_B is reachable from v_A



Cycles

- A cycle is a path where $v_1 = v_n$
- ▶ A graph with no cycles is said acyclic



Reachability (Undirected)

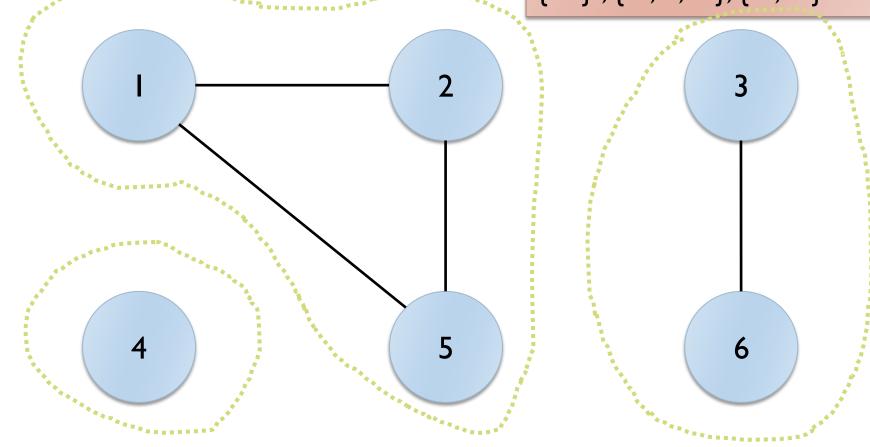
- An undirected graph is **connected** if, for every couple of vertices, there is a path connecting them
- The connected sub-graph of maximum size are called connected components
- A connected graph has exactly one connected component

Connected components

The graph is **not** connected.

Connected components = 3

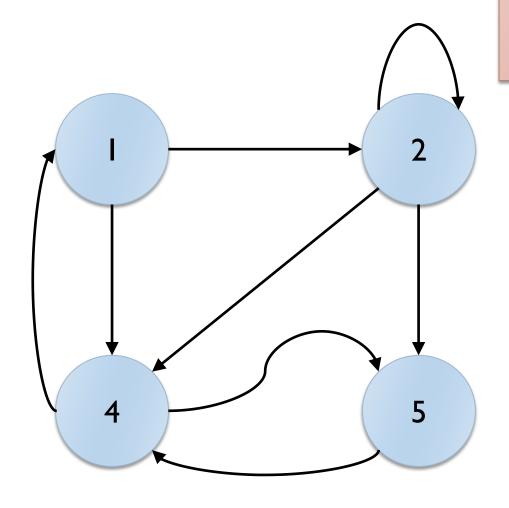
{ 4 } , { 1, 2, 5 }, { 3, 6 }



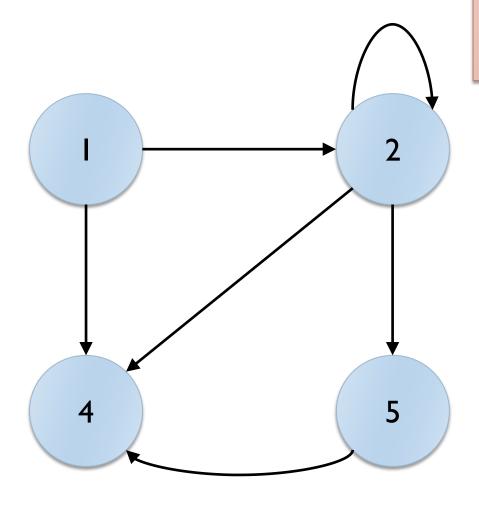
Reachability (Directed)

A directed graph is **strongly connected** if, for <u>every</u> ordered pair of vertices (v, v'), there exists at least one path connecting v to v'

The graph is strongly connected

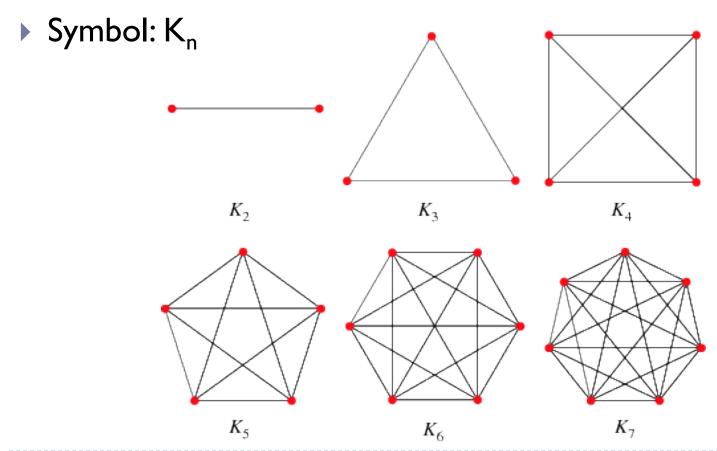


The graph is **not** strongly connected



Complete graph

A graph is complete if, for every pair of vertices, there is an edge connecting them (they are adjacent)



Complete graph: edges

- In a complete graph with n vertices, the number of edges is
 - ▶ n(n-1), if the graph is directed
 - ▶ n(n-1)/2, if the graph is undirected
 - If self-loops are allowed, then
 - ▶ n² for directed graphs
 - ▶ n(n-1) for undirected graphs

Density

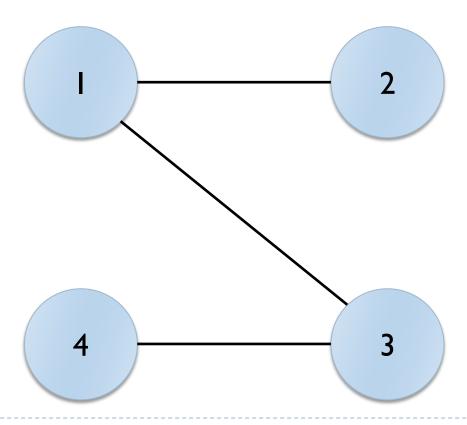
The density of a graph G=(V,E) is the ratio of the number of edges to the total number of possible edges

$$d = \frac{|E(G)|}{|E(K_{|V(G)|})|}$$

Example

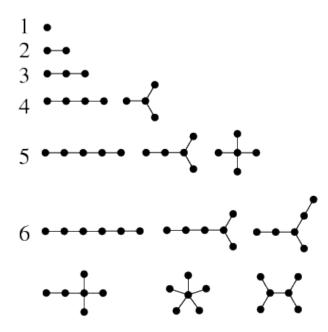
Density = 0.5

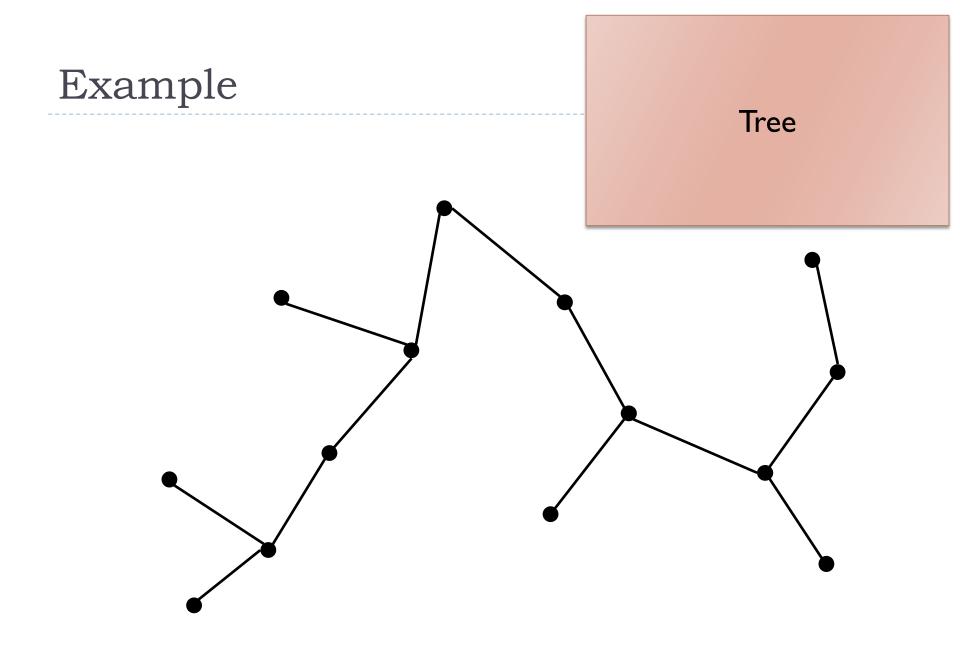
Existing: 3 edges
Total: 6 possible edges



Trees and Forests

- An undirected acyclic graph is called forest
- An undirected acyclic connected graph is called tree

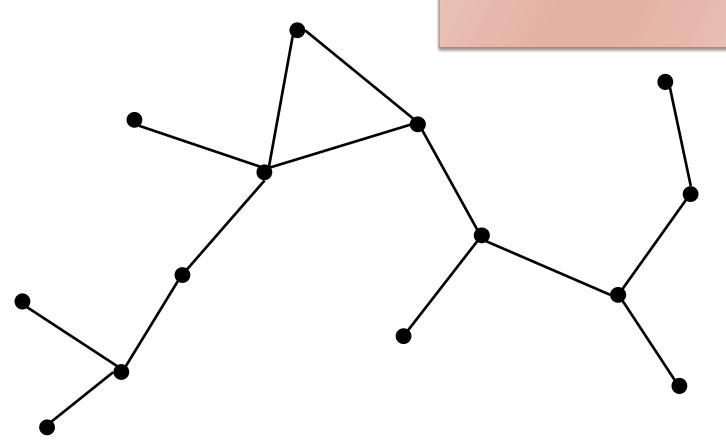




Example **Forest**

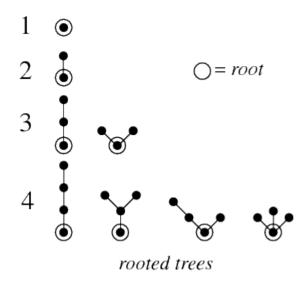
Example

This is not a tree nor a forest (it contains a cycle)



Rooted trees

- In a tree, a special node may be singled out
- ▶ This node is called the "root" of the tree
- Any node of a tree can be the root

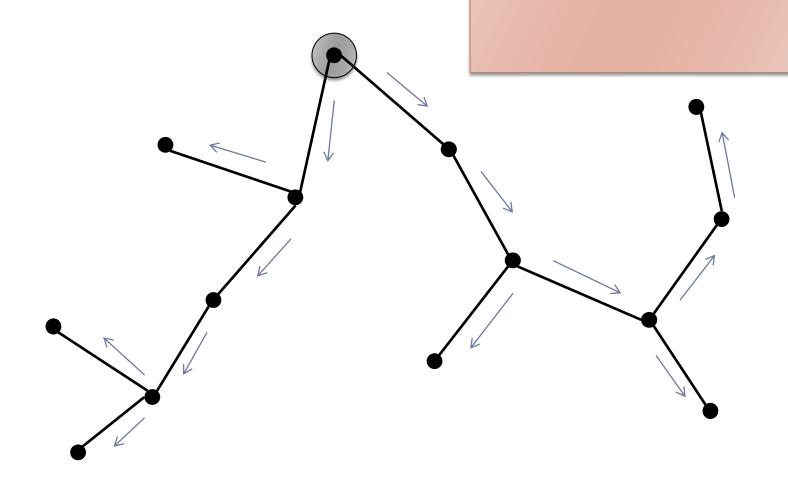


Tree (implicit) ordering

- The root node of a tree induces an ordering of the nodes
- The root is the "ancestor" of all other nodes/vertices
 - "children" are "away from the root"
 - "parents" are "towards the root"
- The root is the only node without parents
- All other nodes have exactly one parent
- The furthermost (children-of-children-of-children...) nodes are "leaves"

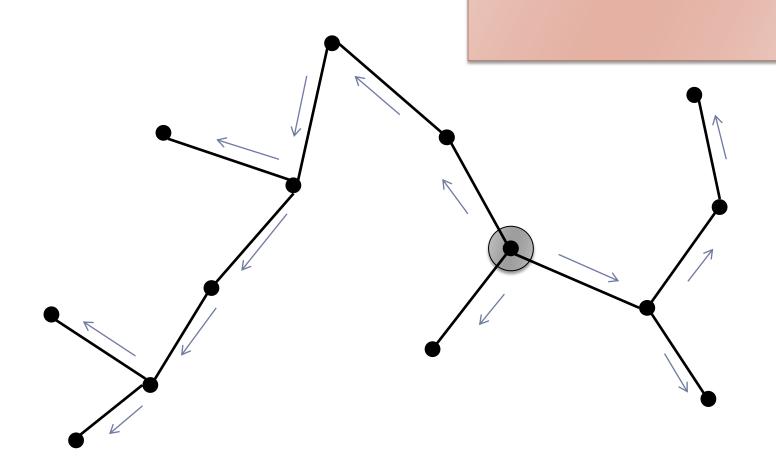
Example

Rooted Tree



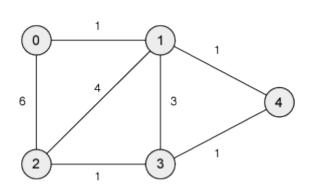
Example

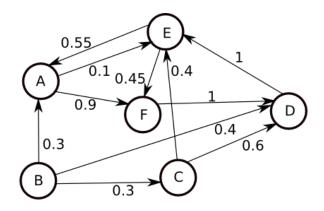
Rooted Tree



Weighted graphs

- A weighted graph is a graph in which each branch (edge) is given a numerical weight.
- A weighted graph is therefore a special type of labeled graph in which the labels are numbers (which are usually taken to be positive).





Applications

Introduction to Graphs

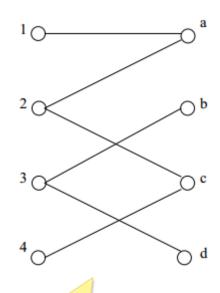
Graph applications

Graphs are everywhere

- Facebook friends (and posts, and 'likes')
- Football tournaments (complete subgraphs + binary tree)
- Google search index (V=page, E=link, w=pagerank)
- Web analytics (site structure, visitor paths)
- Car navigation (GPS)
- Market Matching

Market matching

- \rightarrow H = Houses (1, 2, 3, 4)
- ▶ B = Buyers (a, b, c, d)
- $V = H \cup B$
- ▶ Edges: $(h, b) \in E$ if b would like to buy h
- Problem: can all houses be sold and all buyers be satisfied?
- Variant: if the graph is weighted with a purchase offer, what is the most convenient solution?
- Variant: consider a 'penalty' for unsold items



This graph is called "bipartite":

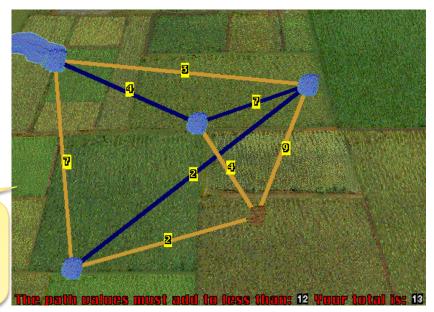
 $H \cap B = \emptyset$

Connecting cities

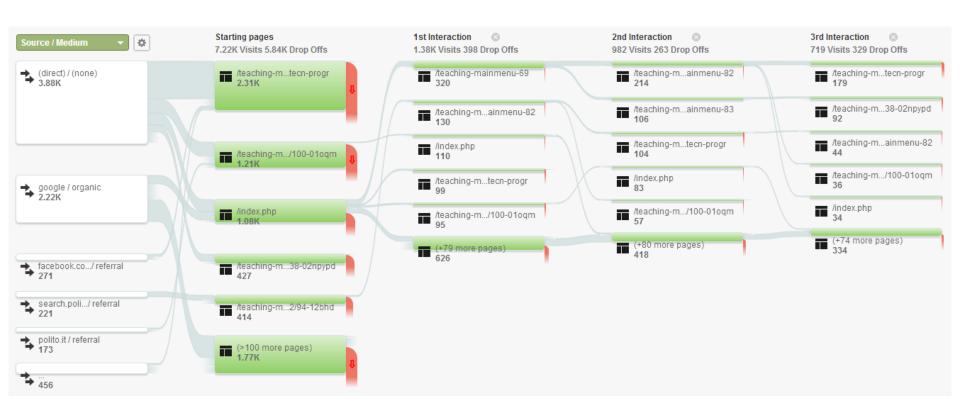
- We have a water reservoir
- We need to serve many cities
 - Directly or indirectly
- What is the most efficient set of inter-city water connections?

Also for telephony, gas, electricity, ...

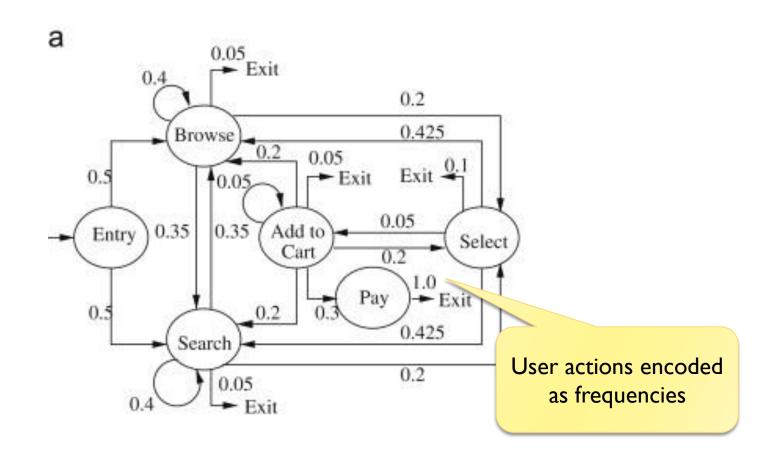
We are searching for the "minimum spanning tree"



Google Analytics (Visitors Flow)



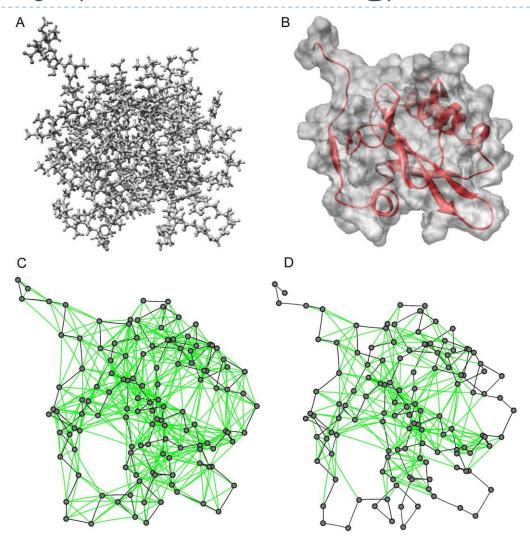
Customer behavior



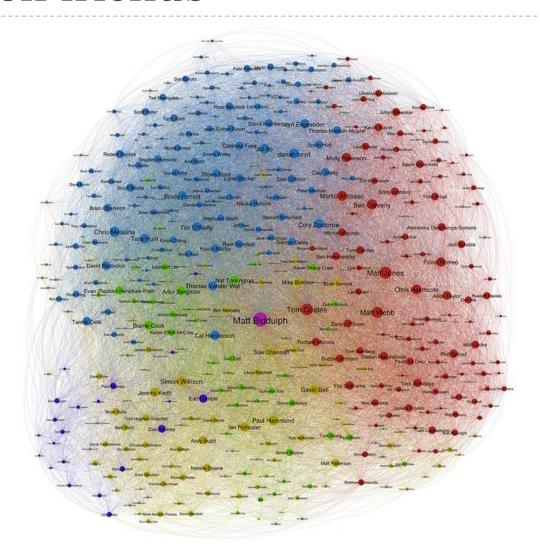
Street navigation

Train maps

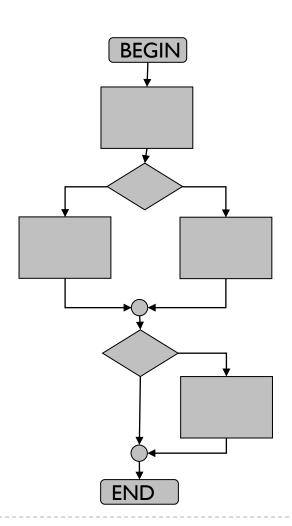
Chemistry (Protein folding)

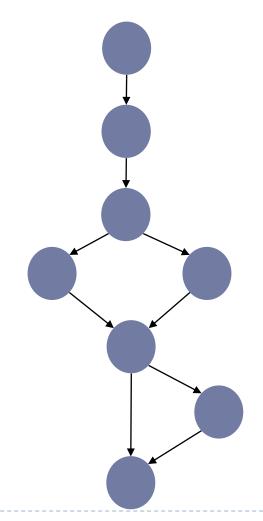


Facebook friends



Flow chart





Licenza d'uso

 Queste diapositive sono distribuite con licenza Creative Commons "Attribuzione - Non commerciale - Condividi allo stesso modo (CC BY-NC-SA)"

Sei libero:

- di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest'opera

di modificare quest'opera

Alle seguenti condizioni:

Attribuzione — Devi attribuire la paternità dell'opera agli autori originali e in modo tale da non suggerire che essi avallino te o il modo i cui tu usi l'opera.

Non commerciale — Non puoi usare quest'opera per fini commerciali.

- Condividi allo stesso modo Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con ur licenza identica o equivalente a questa.
- http://creativecommons.org/licenses/by-nc-sa/3.0/