
HTML 5 – Part III 
Audio & video 

Laura Farinetti 

Dipartimento di Automatica e Informatica 

Politecnico di Torino 

laura.farinetti@polito.it 

1 



HTML5 media elements 
 Inserting a video or an audio should be as easy as 

inserting an image 

◦ Browsers should have built-in support for playing video 

◦ No third-party plugins should be required 

◦ Standard formats should exist that are supported by all 
browsers 

 HTML5 defines a standard way to embed video or 
audio in a web page, using a <video> or <audio> 
element 

 New HTML5 media elements 

2 



HTML5 media elements 

 The new audio and video tags make multimedia no 
longer a second-class citizen on the web 

◦ No separate download or enabled/disabled issues 

◦ No separate rendering (problems with HTML elements 
overlap) 

◦ Keyboard accessibility, styling with CSS, combining video 
and canvas  

◦ http://www.craftymind.com/factory/html5video/Canvas
Video.html 

◦ http://www.craftymind.com/factory/html5video/Canvas
Video3D.html 

 The media elements expose a common, integrated, 
and scriptable API to the document 

◦ You can design and program your own multimedia 
controls (e.g., play, seek, etc.) 

 3 

http://www.craftymind.com/factory/html5video/CanvasVideo.html
http://www.craftymind.com/factory/html5video/CanvasVideo.html
http://www.craftymind.com/factory/html5video/CanvasVideo.html
http://www.craftymind.com/factory/html5video/CanvasVideo.html
http://www.craftymind.com/factory/html5video/CanvasVideo.html
http://www.craftymind.com/factory/html5video/CanvasVideo3D.html
http://www.craftymind.com/factory/html5video/CanvasVideo3D.html
http://www.craftymind.com/factory/html5video/CanvasVideo3D.html
http://www.craftymind.com/factory/html5video/CanvasVideo3D.html


Audio and video files 

 An audio or video file is just a container file, 
similar to a ZIP archive file that contains a 
number of files (audio tracks, video tracks, and 
additional metadata) 

◦ The audio and video tracks are combined at runtime 
to play the video 

◦ Metadata contains information  
about the video such as  
cover art, title and subtitle,  
captioning information, … 

4 

Video Tracks 

Video Tracks 

Metadata 

Video Tracks 

AudioTracks 

Metadata 

Video Container File 



Audio and video codecs 

 Algorithms are used to encode and decode a particular audio or 
video stream so that they can be played back 

 A codec is able to understand a specific container format and 
decodes the audio and video tracks that it contains 

 Examples of audio codecs 

◦ MPEG-3: MPEG-1 or MPEG-2 Audio Layer III 

◦ AAC (Advanced Audio Coding): designed to be the successor of the 
MP3 format and included in the MPEG-4 specification, AAC 
generally achieves better sound quality than MP3 at similar bit rates 

◦ Ogg Vorbis: open, patent-free, professional audio encoding and 
streaming technology from the Xiph.org Foundation 

 Examples of video codecs  

◦ H.264: currently one of the most commonly used formats for the 
recording, compression, and distribution of high definition video 

◦ VP8: open video compression format released by Google 

◦ Ogg Theora: free and open video compression format from the 
Xiph.org Foundation 

5 



Audio and video codecs 

 Some of the codecs are patented, while others are 
freely available 

◦ For example, the Vorbis audio codec and the Theora 
video codec are freely available, while the use of the 
MPEG-4 and H.264 codecs are subject to license fees 

 Originally, the HTML5 specification was going to 
require that certain codecs were supported 

◦ Unfortunately, there does not appear to be a single 
codec that all browser vendors are willing to 
implement 

 For now, the codec requirement has been dropped 
from the specification 

◦ This decision might be revisited in the future… 

6 



Video formats 

 Currently, there are 3 supported video 
formats for the video element 
◦ Ogg = Ogg files with Theora video codec and 

Vorbis audio codec 

◦ MPEG4 = MPEG 4 files with H.264 video codec 
and AAC audio codec 

◦ WebM = WebM files with VP8 video codec and 
Vorbis audio codec 

 

 

 

 

7 

http://www.videojs.com/html5-video-support/  

  

http://www.videojs.com/html5-video-support/
http://www.videojs.com/html5-video-support/
http://www.videojs.com/html5-video-support/
http://www.videojs.com/html5-video-support/
http://www.videojs.com/html5-video-support/


Declaring a media element 

 The controls attribute tells the browser to display 
common user controls for starting, stopping, and 
seeking in the media clip, as well as volume control 

8 

<!DOCTYPE html> 

<html> 

<title>HTML5 Audio </title> 

<audio controls  

   src="johann_sebastian_bach_air.ogg"> 

   An audio clip from Johann Sebastian Bach. 

</audio> 

</html> 

audio.html 



Declaring a media element 

 Leaving out the controls attribute hides them, and 
leaves the clip with no way for the user to start 
playing 

◦ It will not show anything at all in the case of audio 
files, as the only visual representation of an audio 
element is its controls 

 By including the autoplay attribute, the media file 
will play as soon as it is loaded, without any user 
interaction 

 

9 

<audio autoplay> 

  <source src="johann_sebastian_bach_air.ogg"   

     type="audio/ogg; codecs=vorbis"> 

  An audio clip from Johann Sebastian Bach. 

</audio> 

audio2.html 



Multiple sources 

 But what if the browser in question does not support that 
container or codec?  

 An alternate declaration can be used that includes multiple 
sources from which the browser can choose 

 

 

 

 

 

 Sources are processed in order, so a browser that can play 
multiple listed source types will use the first one it encounters 

 The beauty of this declaration model is that as you write code to 
interact with the media file, it doesn’t matter to you which 
container or codec was actually used: the browser provides a 
unified interface for you to manipulate the media 

10 

<audio controls> 

  <source src="johann_sebastian_bach_air.ogg"> 

  <source src="johann_sebastian_bach_air.mp3"> 

  An audio clip from Johann Sebastian Bach. 

</audio> 



JS APIs for media control 

11 



Media attributes 

12 



Media attributes 

13 



Example (audio) 

14 

<audio id="clickSound"> 

  <source src="johann_sebastian_bach_air.ogg"> 

  <source src="johann_sebastian_bach_air.mp3"> 

</audio> 

<button id="toggle" onclick="toggleSound()">Play</button> 

 

<script type="text/javascript"> 

function toggleSound() { 

  var music = document.getElementById("clickSound"); 

  var toggle = document.getElementById("toggle"); 

  if (music.paused) { 

    music.play(); 

    toggle.innerHTML = "Pause"; 

  } 

  else { 

    music.pause(); 

    toggle.innerHTML ="Play"; 

  } 

} 

</script> 

audioCue.html 



Additional video attributes 

15 



Example: mouseover video playback 

16 

<!DOCTYPE html> 

<html> 

  <link rel="stylesheet" href="styles.css"> 

  <title>Mouseover Video</title> 

  <video id="movies" onmouseover="this.play()"   

    onmouseout="this.pause()" autobuffer="true" 

    width="400px" height="300px"> 

    <source src="Intermission-Walk-in.ogv"  

      type='video/ogg; codecs="theora, vorbis"'> 

    <source src="Intermission-Walk-in_512kb.mp4"  

      type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'> 

  </video> 

</html> 

mouseoverVideo.html 



HTML5 video + CSS 

 The video tag can be styled using traditional CSS 
(e.g. border, opacity, etc) since it is a first-class 
citizen in the DOM 

◦ You can also style it with the latest CSS3 properties 
like reections, masks, gradients, transforms, transitions 
and animations  

 Examples 

17 

videoCSS1.html 

videoCSS2.html 



HTML5 video + JavaScript 

 Example 

18 

videoJS.html 



HTML5 video + JavaScript 

19 

player 

controls play 

video 

volumecontrol 



HTML5 video + JavaScript 

20 

positionview time 

position 

transportbar 

vol 

volume 

volumebar 



Example: video timeline viewer 

21 

videoTimeline.html 



Example: video timeline viewer 

 Autoplay attribute: the video starts as soon as the page 
loads 

 Two additional event handler functions, oncanplay (when 
the video is loaded and ready to begin play) and 
onended (when the video ends) 

 

 

 Canvas called timeline into which we will draw frames of 
video at regular intervals 

22 

<video id="movies" autoplay oncanplay="startVideo()"  

       onended="stopTimeline()" autobuffer="true"  

       width="400px" height="300px"> 

  <source src="Intermission-Walk-in.ogv"  

       type='video/ogg; codecs="theora, vorbis"'> 

  <source src="Intermission-Walk-in_512kb.mp4" 

       type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'> 

</video> 

<canvas id="timeline" width="400px" height="300px"> 



Example: video timeline viewer 

 Variables declaration 

23 

// # of milliseconds between timeline frame updates (5sec) 

var updateInterval = 5000; 

// size of the timeline frames 

var frameWidth = 100; 

var frameHeight = 75; 

// number of timeline frames 

var frameRows = 4; 

var frameColumns = 4; 

var frameGrid = frameRows * frameColumns; 

// current frame 

var frameCount = 0; 

// to cancel the timer at end of play 

var intervalId; 

 

var videoStarted = false; 



Example: video timeline viewer 
 Function updateFrame: grabs a video frame and 

draws it onto the canvas 

24 

// paints a representation of the video frame into canvas 

function updateFrame() { 

  var video = document.getElementById("movies"); 

  var timeline = document.getElementById("timeline"); 

  var ctx = timeline.getContext("2d"); 

  // calculate out the current position based on frame 

  // count, then draw the image there using the video 

  // as a source 

  var framePosition = frameCount % frameGrid; 

  var frameX = (framePosition % frameColumns) * frameWidth; 

  var frameY = (Math.floor(framePosition / frameRows)) *   

                frameHeight; 

  ctx.drawImage(video, 0, 0, 400, 300, frameX, frameY,  

  frameWidth, frameHeight); 

  frameCount++; 

} 



Example: video timeline viewer 

25 

frameCount = 25 

framePosition = 25 % 16 = 9 

frameX = (9 % 4) * 100 = 100 

frameY = (Math.floor(9 / 4)) * 75 = 150 

ctx.drawImage(video, 0, 0, 400, 300, 100, 150, 100, 75)    

100 
150 



Canvas: drawImage 

 The first argument can be an 
image, a canvas or a video 
element  

 When a canvas uses a video 
as an input source, it draws 
only the currently displayed 
video frame 

◦ Canvas displays will not 
dynamically update as the 
video plays 

◦ If you want the canvas content 
to update, you must redraw 
your images as the video is 
playing 

26 

cxt.drawImage(image, dx, dy)  

cxt.drawImage(image, dx, dy, dw, dh)  

cxt.drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh) 



Example: video timeline viewer 

 Function startVideo: updates the timeline frames 
regularly 

◦ The startVideo() function is triggered as soon as the 
video has loaded enough to begin playing 

 

 

 

 

 

 

 

 setInterval: calls a function repeatedly, with a fixed 
time delay between each call to that function 

27 

function startVideo() { 

  // only set up the timer the first time the video starts 

  if (videoStarted) return; 

  videoStarted = true; 

  // calculate an initial frame, then create 

  // additional frames on a regular timer 

  updateFrame(); 

  intervalId = setInterval(updateFrame, updateInterval); 

  ...   

var intervalID = window.setInterval(func, delay);  



  // set up a handler to seek the video when a frame          

  // is clicked         

  var timeline = document.getElementById("timeline");         

  timeline.onclick = function(evt) { 

    var offX = evt.layerX - timeline.offsetLeft; 

    var offY = evt.layerY - timeline.offsetTop;      

Example: video timeline viewer 

 Function startVideo: handles user clicks on the individual timeline 
frames 

 

 

 

 

 

 

 offsetLeft: returns the number of pixels that the upper left corner 
of the current element is offset to the left within the parent node 

 offsetTop: returns the distance of the current element relative to 
the top of the parent node 

 layerX: returns the horizontal coordinate of the event relative to 
the current layer 

 layerY: returns the vertical coordinate of the event relative to the 
current layer 

28 



Example: video timeline viewer 

 The clicked frame should be only one of the most 
recent video frames, so seekedFrame determines the 
most recent frame that corresponds to that grid index 

29 

    // calculate which frame in the grid was clicked             

    // from a zero-based index             

    var clickedFrame = Math.floor(offY/frameHeight)* frameRows; 

    clickedFrame += Math.floor(offX/frameWidth);             

    // find the actual frame since the video started  

    var seekedFrame = (((Math.floor(frameCount/frameGrid))*                                

      frameGrid) + clickedFrame);             



Example: video timeline viewer 

30 

offX= 120 

offY= 60 

clickedFrame = Math.floor(60/75)* 4 = 0             

clickedFrame += Math.floor(120/100)= 1             

seekedFrame = (((Math.floor(25/16))* 16) + 1 = 17            



Example: video timeline viewer 

 Function startVideo: handles user clicks on the individual 
timeline frames 

31 

    // if the user clicked ahead of the current frame             

    // then assume it was the last round of frames             

    if (clickedFrame > (frameCount%16))                 

      seekedFrame -= frameGrid;             

    // can't seek before the video 

    if (seekedFrame < 0) return;             

    // seek the video to that frame (in seconds)             

    var video = document.getElementById("movies");             

    video.currentTime = seekedFrame * updateInterval / 1000;   

    // then set the frame count to our destination               

    frameCount = seekedFrame;         

  }     

} 



Example: video timeline viewer 

 Function stopTimeline: stops capturing frames when 
the video finishes playing 

◦ The stopTimeline handler is be called when the 
“onended” video handler is triggered, i.e. by the 
completion of video playback. 

 

 

 

 

 

 clearInterval: cancels repeated action which was 
set up using setInterval() 

32 

// stop gathering the timeline frames 

function stopTimeline() { 

  clearInterval(intervalId); 

} 



Event listener 

 addEventListener(eventType, listener, useCapture) 

◦ method that associates a function with a particular event and binds 
the event to the current node  

 3 parameters 

◦ eventType: a string representing the event to bind, without the “on” 
prefix (e.g. “click”, “mousedown”, …) 

◦ listener: the object or function to fire when the event fires. The actual 
parameter entered should be a reference to the function or object 
(ie: “dothis” instead of “dothis()”) 

◦ useCapture: a Boolean value. If true, the node listens for the event 
type only while the event propagates toward the target node (in 
event capture node). If false, the node listens only when the event 
bubbles outward from the event target. If the current node is the 
target of the event, either Boolean value may be used 

 The advantage of using the DOM to bind an event is that you 
can assign multiple functions to a node for the same event (ie: 
window.onload) without running into event handler conflicts 

 
33 



Synchronization 

 There is currently no good API for synchronizing things 
with the timeline of a video (captions, infoboxes) 

 Until something is standardized, for now 

◦ We can use a timer and read currentTime 

◦ We can listen for timeupdate and read currentTime 

 Notes: 

◦ timeupdate is red with 15 to 250 ms interval while the 
video is playing, unless the previous event handler for 
timeupdate is still running 

◦ you cannot rely on the interval being the same over time or 
between browsers or devices 

◦ note that the setInterval, unless cleared, also runs when the 
video is not playing 

34 



Video with JavaScript synchronised 

captions 

35 

videoCaption.html 



Video with JavaScript synchronised 

captions 

36 

<div id="transcript"> 

<h3>Transcript</h3> 

<p> 

<span data-begin=1 data-end=6>And now, before the next show  

   starts, let's enjoy an intermission!</span> 

<span data-begin=6 data-end=10>You'll find our snack bar chopped  

   full of good things to eat and drink.</span> 

<span data-begin=10 data-end=11.5>Tasty, tempting hotdogs, </span> 

<span data-begin=12 data-end=14>thirst quenching soft drinks,  

   </span> 

<span data-begin=14 data-end=16>fresh crunchy popcorn, </span> 

<span data-begin=16 data-end=19>a complete assortment of delicious  

   candy,</span> 

<span data-begin=19 data-end=21>and a full lot of cigarettes.  

   </span> 

... 

</p> 

</div> 



Video with JavaScript synchronised 

captions 

 In order for the script to know when to display each 
span, each of them is time-stamped 

◦ New feature of HTML5 that allows any element to have 
custom data attributes to pass data to scripts 

 

 

 The script hides the div that contains the plain transcript 
(JavaScript to write a CSS rule that set it to 
display:none) 

 

 

37 

<span data-begin=14 data-end=16>fresh crunchy popcorn, </span> 

document.write('<style>#transcript{display:none}</style>'); 



Custom attributes in HTML 5 

 Formal support of custom attributes inside HTML 
elements 

 Technically it is always  possible to insert arbitrary 
attributes into an element and parse them using 
JavaScript getAttribute() method, but it is not valid 
HTML: 

 

 

 

 In HTML 5, you can define custom attributes, but the  
attribute name must be prefixed with “data-” in order to 
validate: 

38 

<div id="mydiv" brand="toyota" model="prius"> 

  John is very happy with his Toyota Prius, because he    

  saves on gas.</div> 

<div id="mydiv" data-brand="toyota" data-model="prius"> 

  John is very happy with his Toyota Prius, because he  

  saves on gas.</div> 



Video with JavaScript synchronised 

captions 

 The script grabs each span from the hidden div 
and positions them on top of the video at the 
correct time 

 Overlaying the text is easy: it positions another div 
(with an id of caption) over the top of the video 
(with a text-shadow to improve legibility) 

 To determine when to overlay each span, the script uses 
the ontimeupdate event to interrogate the video API and 
find out how long it has been playing  
 The video fires the ontimeupdate event every about 250ms in 

Opera 

 Then it loops around the span elements in the 
transcript until it finds one with a data-begin and 
data-end time that encompasses the current time 

39 



Multilingual synchronized captions 

40 

videoCaption-lang.html 



Other synchronization examples 

 http://chirls.com/2011/01/13/what-im-

working-on-synchronized-videos-in-html5-

featuring-ok-go/ 

 

41 

http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/
http://chirls.com/2011/01/13/what-im-working-on-synchronized-videos-in-html5-featuring-ok-go/


Video events 

 The Video Events Test Page demonstrates the 
new HTML5 video element, its media API, and 
the media events 
◦ Play, pause, and seek in the entire video, change 

the volume, mute, change the playback rate 
(including going into negative values) 

◦ See the effect on the video and on the underlying 
events and properties 

◦ The Media Events table contains the number of 
times each media event has been received 

◦ The Media Properties table contains the value of 
the media properties 

42 

http://www.w3.org/2010/05/video/mediaevents.html


Video events 

43 http://www.w3.org/2010/05/video/mediaevents.html 



Licenza d’uso 

 Queste diapositive sono distribuite con licenza Creative 
Commons “Attribuzione - Non commerciale - Condividi allo 
stesso modo 2.5 Italia (CC BY-NC-SA 2.5)” 

 Sei libero: 

◦ di riprodurre, distribuire, comunicare al pubblico, esporre in 
pubblico, rappresentare, eseguire e recitare quest’opera 

◦ di modificare quest'opera 

 Alle seguenti condizioni: 

◦ Attribuzione — Devi attribuire la paternità dell’opera agli autori 
originali e in modo tale da non suggerire che essi avallino te o il 
modo in cui tu usi l'opera.  

◦ Non commerciale — Non puoi usare quest’opera per fini 
commerciali.  

◦ Condividi allo stesso modo — Se alteri o trasformi quest’opera, 
o se la usi per crearne un’altra, puoi distribuire l’opera risultante 
solo con una licenza identica o equivalente a questa.  

 http://creativecommons.org/licenses/by-nc-sa/2.5/it/   
44 

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/

