
MVC: the Model-View-Controller

architectural pattern

Laura Farinetti

Dipartimento di Automatica e Informatica

Politecnico di Torino

laura.farinetti@polito.it

1

Model-View-Controller

 MVC is an architectural pattern used in software
development

 It’s been around for several decades but has
gained popularity recently thanks to some popular
development frameworks such as Ruby on Rails

 Aim: to promote good programming practices and
code reuse by separating a web application into
three layers: data, presentation, and the
interaction between the two

 By separating these elements from each other, one
can be easily updated without affecting the others

2

Model-View-Controller

 Developed in Xerox Parc, Palo Alto and implemented for
the first time in Smalltalk-80

 Original objective: bridge the gap between the human
user’s mental model and the digital model that exists in
the computer

 Used today in the most important software development
frameworks

◦ SmallTalk

◦ Microsoft Foundation Classes (C++), .Net

◦ Java (Struts, Swing, SpringMVC, Cocoon)

◦ ActionScript

◦ Pyton (Zope, Plone)

◦ Ruby

◦ PHP (Drupal, Joomla!)

3

Traditional applications
 A web application collects data and action requests

from users… elaborates/stores them… visualize the
results

 Browser directly accesses page

◦ Control is not centralized

◦ No content/style separation

◦ Easy and fast to produce

◦ Difficult to maintain

4

MVC Applications
 A web application collects data and action requests

from users… elaborates/stores them… visualize the
results

 Browser accesses a “controller”

◦ Control is centralized

◦ Clean separation of content/style

◦ More work to produce

◦ Easier to maintain and expand

5

MVC in short

 The Model represents the data

 The View represents the user interface

(i.e. the web page)

 The Controller facilitates communication

between the two

6

Example

7

Client

Baker

result

Pans

Ingredients

request

We are

thinking

of …

Example

8

Client

Baker

result

Pans

Ingredients

request

We are

thinking

of …

Model

View

Controller

The model

 The model represents the data in the application

 “Data” means the “things” in the application that can
be abstracted, generally stored in a database

 In addition to defining the data that a “thing”
contains, it’s also the model’s job to interact with the
database where the actual data are stored, and to
implement all logic relating to the creation, fetching,
updating, and deleting, and other data manipulation

 The model is also built on top of an object-relational
mapping (ORM), a system that connects the elements
of the model object to the appropriate fields in the
database

◦ It automatically handles all interaction with the database,
allowing the developer to avoid writing SQL

9

The model

 The code in the model is often referred to as
business logic

 Business logic is all the rules that define data
and how to interact with it

 By isolating the business logic from the
presentation layer, it is easier to write and
maintain the logic for the application in a way
that is both reusable and transportable to
another framework without conflicting with the
way the user interacts with it on the web page

 A common example of business logic is
validation rules

10

Example: a blog

 Blogs store posts in a database

 Model called “Post”

 Data

◦ Post tells the application what type of data a post contains
(usually a title, a date and some body text)

 Business logic

◦ When a new blog post is made, the application developer
wants to ensure that the post has been given a title

◦ When the new post is submitted via web form, the model looks
at the data it receives and checks if it conforms to any
validation rules that apply

◦ If there are any errors, e.g. an empty title field, the model
rejects the data and sends an error back to the user

◦ If data passes validation, the model opens a connection to the
database and save a new post record, using its ORM

11

Important

 The model is not the database

 The model is an abstraction

◦ of the data itself

◦ of everything the application knows about

what the data is and how it works

 It is considered good practice to put as

much of the code as possible into the

model

12

The view

 The view is the presentation layer of the
application, the user interface

 For the most part, the view is simply the HTML
page

 Small bits of inline logic are included, e.g.
simple loops to create tables

 The goal in creating a good view is to have as
little logic as possible
◦ A view should be simple enough that someone who

only works with markup and doesn’t program, like a
designer, can work with it easily

◦ Heavy logics is in the model and in the controller

13

The view
 There is a different view for each different page in

a MVC application

◦ Web frameworks that use MVC usually offer a method
of dividing the view into even smaller sections to further
modularize code

 There are many elements of a single page that
usually are in common with other pages on a site
(logo and branding, navigation, footer text, …)

◦ To keep from repeating all this code in every view, the
view offers a layout, an HTML template that contains all
the markup in common to multiple pages

◦ When a page loads, the framework will take the specific
view for that page and insert it into the overall layout

14

The view

 Another common feature is what in Rails is
called a “partial”

◦ A very small chunk of reusable markup that can be
included wherever it is needed

 Partials are another way to organize the code
into small chunks, following the programming
practice called Don’t Repeat Yourself (DRY),
which is one of the core philosophies of rapid
development frameworks like Rails

15

Example: a blog

 Separate pages, and therefore separate
views are:
◦ the page for viewing all blog posts

◦ the page for viewing a specific blog post

◦ the page for adding a new blog post

◦ the page for editing an existing blog post

 A partial might be used to contain the markup
for an individual blog post
◦ on the page that shows one specific entry, this

partial will be used once

◦ on the index page, where all recent posts are
shown, the partial is called in a loop

16

The controller

 The controller is the translator between the view
and the model

 It receives requests from the view (the user), decides
what to do, communicates with the model as
necessary to send or retrieve data, and then
prepares a response for the user to be delivered
back to the view

 The controller is composed of methods that operate
on a model

 When a user follows a link in the application, the
request is sent through what is called the
“dispatcher”, which accesses the appropriate action
in the appropriate controller

17

Example: a blog

 The blog has actions for creating, viewing,
editing, and deleting blog posts

 If a user visits a link to a single blog entry

◦ the dispatcher calls the blog controller’s show
action

◦ the controller then asks the model for the data
for the blog post that the user is requesting

◦ when the controller receives this data from the
model, it will set variables with that data and
pass it on to the view

18

Important

 In best practice, the controller don’t do any
manipulation of data or user interface, it
simply translates between the view and the
model

◦ It presents the model with requests for data that it
can understand, and it provides the view with data
that it knows how to format and present to the user

19

Example: the big picture

 Example:

◦ The user submits a form that adds a new blog post

◦ The request is sent to the blog controller, which extracts the data submitted via the HTTP
POST request and sends a message to the blog model to save a new post with this data

◦ The model checks the data against its validation rules

◦ Assuming it passes validation, the model stores the data for this new post in the database
and tells the controller it was successful

◦ The controller then sets a variable for the view indicating success

◦ The view displays this message to the user back on the web page, and they know their new
blog post has been successfully created

◦ If, for some reason, validation of the data failed, the model alerts the controller of any
errors, which would set a variable containing these errors for the view

◦ The view would then present the original form along with the error messages for any fields
that didn’t validate

20

Jimmy Cuadra, “An Introduction to MVC”

MVC advantages

 Focus separation

◦ Model centralizes business logic: information designer

◦ View centralizes display logic: visual designer

◦ Controller centralizes application flow: interaction
designer

 Clean separation of content/style

◦ Multi-device systems: same model, different views and
controls

◦ Creative design: different views, adaptable to
different styles or contexts

 Allows multiple people to work on different parts

 Easier testing

21

The design process

 Iterative process

22

Model

View

Controller

Design

Implementation Test

Implementation Test

Implementation Test

Analysis

The Ruby on Rails MVC framework

 Rails is a MVC framework

 ActiveRecord: the Model

◦ Maintains the relationship between Object and
Database and handles validation, association,
transactions, and more

◦ This subsystem is implemented in ActiveRecord
library which provides an interface and binding
between the tables in a relational database and
the Ruby program code that manipulates database
records

◦ Ruby method names are automatically generated
from the field names of database tables, and so on

23

The Ruby on Rails MVC framework

 ActionView: the View

◦ A presentation of data in a specific format,
triggered by a controller’s decision to present the
data

◦ Script-based templating systems like JSP, ASP, PHP
and very easy to integrate with AJAX technology

◦ This subsystem is implemented in ActionView
library which is an Embedded Ruby (ERb) based
system for defining presentation templates for
data presentation

◦ Every Web connection to a Rails application results
in the displaying of a view

24

The Ruby on Rails MVC framework

 ActionController: the Controller

◦ The facility within the application that directs

traffic, on the one hand querying the models for

specific data, and on the other hand organizing

that data (searching, sorting, massaging it) into a

form that fits the needs of a given view

◦ This subsystem is implemented in ActionController

which is a data broker sitting between

ActiveRecord (the database interface) and

ActionView (the presentation engine)

25

26
http://wiki.rubyonrails.org/

Licenza d’uso

 Queste diapositive sono distribuite con licenza Creative
Commons “Attribuzione - Non commerciale - Condividi allo
stesso modo 2.5 Italia (CC BY-NC-SA 2.5)”

 Sei libero:

◦ di riprodurre, distribuire, comunicare al pubblico, esporre in
pubblico, rappresentare, eseguire e recitare quest’opera

◦ di modificare quest'opera

 Alle seguenti condizioni:

◦ Attribuzione — Devi attribuire la paternità dell’opera agli autori
originali e in modo tale da non suggerire che essi avallino te o il
modo in cui tu usi l'opera.

◦ Non commerciale — Non puoi usare quest’opera per fini
commerciali.

◦ Condividi allo stesso modo — Se alteri o trasformi quest’opera,
o se la usi per crearne un’altra, puoi distribuire l’opera risultante
solo con una licenza identica o equivalente a questa.

 http://creativecommons.org/licenses/by-nc-sa/2.5/it/
27

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/

