

User Evaluation: Controlled Experiments

Human Computer Interaction

Fulvio Corno, Luigi De Russis

Academic Year 2020/2021

Involving Users: Experimental Methods (recap)

Usability/User Testing

- "Let's find someone to use our app, so that we will get some feedback on how to improve it."
- anecdotal, mostly
- observation-driven

Controlled Experiments

- "We want to verify if users of our app perform task X faster/.../with fewer errors than our competitor's app."
- scientific
- hypothesis-driven

Overview

- Controlled evaluation of specific aspects of interactive behavior
 typically in lab
- The evaluator chooses a hypothesis to be tested
 most appropriately, a null hypothesis to be confuted
- Various experimental conditions are considered
 o which differ only in the value of some controlled variables
- Three main steps: plan, run*, and analyze

Experimental Design: Planning the Study

- 1. Choose what you want to study, which **narrow and testable question** you want to answer
- 2. Choose the hypothesis (with variables and measures)
- 3. Select your **participants**
- 4. Decide the **experimental method** that you will use
- 5. Write the **task(s)** you will give participants to (dis-)prove your hypothesis
 - o along with the experiment procedure
- 6. Decide which **statistical tests** you are going to use to analyze the results

Experimental Factors

- Hypothesis
 - \circ the prediction of the outcome of the study, what you would like to demonstrate
 - o framed in terms of variables
 - o in the form of a **null hypothesis**, to be disproved
- Variables
 - o things to manipulate and measure, to test the hypothesis
- Subjects (participants)
 - representative, sufficient sample
 - o sample size: <u>at least</u> double the number suggested by Nielsen for usability tests
 - \circ $\,$ vital to the success of any experiment $\,$

Variables

Independent Variable (IV)

- Elements of the experiment manipulated or controlled to produce different conditions for comparison
 - e.g., interface style, number of menu items, icon design, ...
- Each of these can have different values, called *levels*
- One or more. Also called factors

Dependent Variable (DV)

- Characteristics measured in the experiment
 - their values are "dependent" on the changes made to the IV
 - e.g., time taken, number of errors, ...
- for usability testing, they were the "measures"

Variables: A Very Simple Example

We want to verify if users of <mark>our app</mark> perform a task <mark>faster/.../with fewer errors</mark> than our competitor's app

- "our app... than our competitor's app" -> IV? DV?
- "faster/.../with fewer errors" -> IV? DV?

Variables: Example

We want to test whether selection speed in a menu improves as the number of menu items decreases

Independent Variable (IV)

- It is/They are...
- Each IV has ... levels

Dependent Variable (DV)

• It is/They are...

Variables: Example

We want to test whether selection speed in a menu improves as the number of menu items decreases

Independent Variable (IV)

- IV: number of menu items
- If we consider menu items with 3, 5, and 7 items
 - -> 3 levels

Dependent Variable (DV)

 Speed of the menu item selection (sec)

- Experimental condition: e.g., task execution during the experiment
- Each level of an independent variable requires one experimental condition to test
 - 3 menus with 3, 5, and 7 items -> 3 experimental conditions
- More complex experiments may have more than one IV, each with its own levels
 - o experimental conditions should account for all combinations of levels

- Example
- We want to test whether selection speed in a menu improves as the number of menu items decreases AND text or icons are used as labels
 - IVs?
 - Levels?

- Example
- We want to test whether selection speed in a menu improves as the number of menu items decreases AND text or icons are used as labels
 - 2 IVs:
 - 1. number of menu items
 - three levels (as before)
 - 2. label type
 - two levels (text vs. icon)
- How many conditions?

- Example: we want to test whether selection speed in a menu improves as the number of menu items decreases AND text or icons are used as labels
 2 IVs: 1) number of menu items, 2) text vs. icon used in the menu
 1) has three levels (as before) and 2) 2 levels
- How many conditions?
 - 0 **6,3x2**
 - \circ 3 levels for the first IV, 2 for the second IV

3-items menu		5-item	s menu	7-items menu		
textual labels	textual labels + icons	extual labels + textual labels icons		textual labels	textual labels + icons	

Independent Variables: How Many?

- Complex experiments may have multiple IVs
 o is there an upper limit?
- Let's have a look at the *effects* among the variables
 - $\circ~$ an experiment with 1 IV includes a main effect on the DVs
 - o one with 2 IVs includes 2 main effects and 1 interaction effect (2-way)
 - one with 3 IVs includes 3 main effects and 4 interaction effects (three 2-way and a 3-way)
 - \circ one with 4 IVs includes 14 effects, etc.
 - too many effects, too many variables!
- A good experiment design is one that <u>limits</u> the number of IVs to 1 or 2, three at most!

Other Types of Variables

- Control
 - variables that may influence a dependent variable, but they are not under investigation, can be controlled
 - always fixed at a nominal setting during the experiment
 - e.g., display size, mouse cursor speed, chair height, smartphone type, ...
- Random
 - instead of trying to control everything, we can allow some variables to vary randomly
 - typically, they pertain to characteristics of participants, e.g., gender, height, hand size, ...

Other Types of Variables

- Confounding
 - o any circumstance or condition that changes systematically with an IV
 - o problematic!
 - is the effect observed due to the IV or the confounding variable?
 - e.g., if you use two different cameras to track a person's eyes in different conditions (near vs. far), the different characteristics of the 2 cameras are the confounding variables

Hypothesis

- Prediction of the study outcome, framed in terms of IVs and DVs
 - a variation in the independent variable will cause a difference in the dependent variable
- This is done by **disproving** (rejecting) the null hypothesis
 - it states that there is no difference in the dependent variable between the levels of the independent variable
- And accepting the alternative hypothesis

Hypothesis

- The difference is evaluated statistically
 - some statistical measures produce values that can be compared with various levels of significance
 - if a result is significant, at a given level of certainty, the measured differences would not have occurred by chance
 - that is, that the null hypothesis is incorrect

Experimental Methods

- Between-subjects
 - o each participant performs under only one condition
 - o no transfer of learning
 - o more users required, groups have to be balanced
 - $\circ~$ user variation can bias results
- Within-subjects
 - o each participant performs experiment under each condition
 - o transfer of learning possible
 - o less costly and less likely to suffer from user variation
 - \circ also called repeated measures
- When more than one IV is present, it is possible to devise a mixed design
 - \circ one IV is placed between-subjects, the other within-in

Within- or Between-Subjects?

- Important trade-offs:
 - o a **within-subject design** requires <u>less</u> participants
 - it also exhibits the <u>same</u> participants' predispositions across the different conditions
 - o <u>no</u> need to balance groups of participants!
 - however, *transfer* of *learning* is possible (and not desired)
 - e.g., participants may perform better on the second condition because they benefitted from practice with the first one
 - o fatigue may also be an issue
- Counterbalancing help minimize practice effects
 - divide participants into groups and administer the conditions in a different order for each group

Counterbalancing

- Typically, you counterbalance with a (balanced) Latin Square
 - o a nxn table filled with n different symbols positioned such that each symbol occurs exactly one in each row and each column
 - *n* are levels, typically
- In this case, the number of levels of the IV must divide equally into the number of participants
 - e.g., 1 IV with 3 levels, 12 participants

A	В	
В	А	

				А
A	В	D	C	В
В	C	А	D	С
С	D	В	А	D
D	A	C	В	Е

А	В	С	D	Ε
В	С	D	Ε	А
C	D	Ε	А	В
D	Ε	А	В	С
E	А	В	С	D

Counterbalancing: Questions

Do not we have the same problem here

Tasks and Procedure

- When participants are given a test condition, they are asked to do a task while their "performance" is measured
- A good task should represent and discriminate
 - o representative of the activities people will do with the interface
 - discriminate the test conditions, i.e., to further highlight the different effects between conditions
- Procedure
 - the list of tasks, instructions, demonstrations given to participants
 - \circ any questionnaire
 - 0 ...

Statistical Measures

- Disclaimer: before applying any statistical tests, you <u>must always look</u> at data
 - it can expose outliers, e.g., a participant took 3 times as long as everyone else to do a task, and you know that that participant had been suffering from a severe flu the day of the experiment
 - we are not going deep on statistics, as this is beyond the scope of this course
- The choice of statistical analysis depends on
 - \circ the type of data
 - \circ the information required
 - is there a difference? how big is it? how is the estimate?
 - \circ the data distribution

Types of Data

- Nominal
 - \circ categorical data
 - o arbitrary assign a code to mutually exclusive attributes or categories
 - e.g., car license plate numbers, codes for postal zone, gender, ...
- Ordinal
 - provide an order or ranking to an attribute
 - \circ e.g., first choice, second choice, third choice

Types of Data

- Interval
 - o data with equal distances between adjacent values
 - \circ no absolute zero
 - e.g., Celsius temperature scale
 - $\circ~$ can be continuous or discrete
- Ratio
 - \circ the most sophisticated of the four types
 - \circ have an absolute zero
 - e.g., time, all the physical measurements, age, count, ...
 - o can be continuous or discrete

Types of Data and Related Statistical Tests

- Non-parametric tests
 - can be applied to any scale of data
 - limited use for ratio data
 - "distribution free"
- Parametric tests
 - o assume data from a probability distribution
 - e.g., normal or *t*-distribution
 - o more *powerful* than non-parametric tests
 - given the same set of data, a parametric test might detect a difference that the nonparametric test would miss

Types of Data	Appropriate Statistical Tests				
Nominal	Non normotric Tests				
Ordinal	Non-parametric lests				
Interval	Parametric Tests				
Ratio	Non-parametric Tests				

Commonly Used Parametric Tests in HCI

Experiment Design	Independent Variables	Levels for each IV	Type of Test
	1	2	Independent samples t-test
Between-subjects	1	3 or more	One-way ANOVA
	2 or more	2 or more	Factorial ANOVA
	1	2	Paired-samples t-test
Within-subjects	1	3 or more	Repeated measures ANOVA
	2 or more	2 or more	Repeated measures ANOVA
Mixed design	2 or more	2 or more	Split-plot ANOVA

When assumptions are not met, the independent samples *t*-test can be "replaced" by the Mann-Whitney U test, the Wilcoxon signed ranks test can be used instead of the paired-samples *t*-test, etc.

Pearson's Chi-Square Test

- It is a significance test used to analyze frequency count among categories
- One of the most used non-parametric test in HCI (for A/B Testing, mainly)
 - it is used with categorical data, to determine whether there is any relationship in your categories
 - i.e., to compare sets of rates (e.g., "% occurrences") to tell whether the percentage differences are statistically significant
 - or happened by change
- It makes two assumptions:
 - o data points in the categories must be independent from each others
 - e.g., each participant can only contribute in one category
 - \circ it does not work well with small sample size (<20)

Chi-Square Test: Example

- I toss a coin 20 times and I have "head" for 13 times (and "tail" for 7). I am expecting to have 10 times "head" and 10 "tail", instead.
 - null hypothesis: the behavior of the coin does not differ significantly from a "normal" coin
 - alternative hypothesis: the behavior of the coin differs significantly from a "normal" coin
- We are going to apply the Chi-square test
 - we would like to reject the null hypothesis
 - o and accept the alternative hypothesis

 Calculate the test statistics, χ², a normalized sum of squared deviations between observed and theoretical frequencies

$$\circ \quad \chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

- $\circ~$ where O_i is the i-th observation and E_i is the expected (theoretical) count of type i
- Coin example:

$$\circ \quad \chi^2 = \frac{(13-10)^2}{10} + \frac{(7-10)^2}{10} = 1.8$$

- 2. Determine the degrees of freedom, df, of that statistic:
 - With a single variable, df = (Cols 1)
 - goodness of fit, if a sample matches the population
 - With two variables, $df = (Rows 1) \times (Cols 1)$
 - test of independence
 - where Rows corresponds to number of categories in one variable, and Cols corresponds to number of categories in the second variable
- Coin example: we have one variable with two "columns", so...

 $\circ df = (2-1) = 1$

3. Look for the level of confidence (p-value) related to the χ^2 result (1.8) and df (1) in a Probability Table:

df	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1			0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750

from https://people.richland.edu/james/lecture/m170/tbl-chi.html

- Coin example:
 - o first row, 0.10<p<0.25 (p ≈ 0.20)</p>

- 4. Sustain or reject the null hypothesis
 - \circ we usually reject the null hypothesis at p < 0.05 or p < 0.01
 - i.e., we are confident that 95% or 99% of the time the test result correctly applies to the entire population
- Coin example:
 - we fail to reject the null hypothesis!
 - so, we cannot say that our coin is "unfair"...
- In the end... is the null hypothesis true?
 - we do not know, but we cannot reject it!
 - the evidence we have is insufficient for rejecting it

References

- Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, Human Computer Interaction, 3rd Edition
 - Chapter 9: Evaluation Techniques
- I. Scott MacKenzie, Human-Computer Interaction An Empirical Research Perspective
 - Chapter 5: Designing HCI Experiments
- Jonathan Lazar, Jinjuan Heidi Fend, Harry Hochheiser, Research Methods in Human-Computer Interaction, 1st Edition
 Chapter 4: Statistical Analysis, page 73

License

- These slides are distributed under a Creative Commons license "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
- You are free to:
 - Share copy and redistribute the material in any medium or format
 - Adapt remix, transform, and build upon the material
 - The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:

- Attribution You must give <u>appropriate credit</u>, provide a link to the license, and <u>indicate if changes were</u> <u>made</u>. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- **NonCommercial** You may not use the material for <u>commercial purposes</u>.
- **ShareAlike** If you remix, transform, or build upon the material, you must distribute your contributions under the <u>same license</u> as the original.
- **No additional restrictions** You may not apply legal terms or <u>technological measures</u> that legally restrict others from doing anything the license permits.
- https://creativecommons.org/licenses/by-nc-sa/4.0/

