
FOCUS: SOFTWARE ENGINEERING’S 50TH ANNIVERSARY

074 0 -74 5 9 /18 / $ 3 3 . 0 0 © 2 018 I E E E 	 SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE� 71

The Path to
DevOps
Erik Dörnenburg, ThoughtWorks

// IT in businesses is now entirely a team

activity. While we still need experts with

deep technical knowledge, we must focus

on how to get people from all disciplines

working together effectively. //

THE ROLE OF IT in the business
world has changed dramatically over
the past decades. New technologies
and techniques allow enterprises to
get much more out of IT, while at
the same time increasingly sophisti-
cated business models have pushed
IT to investigate and deliver novel
solutions. These may be based on
new technology; however, larger
breakthroughs have required both
new technologies and a rethinking
of how people are organized to make
use of the technology.

Agile software development has
led the way, and now the DevOps
and DesignOps movements are hit-
ting the mainstream. In my opin-
ion, IT in businesses is now entirely
a team activity. While there is, as
ever, a need for experts with deep
technical knowledge, we must focus

our attention on how we get people
from all disciplines working together
effectively.

Technology in a
Supporting Role
In the early days of IT in business,
the 1960s, IT played mostly a sup-
porting role. IT systems were usu-
ally introduced to make existing
processes faster or to reduce the cost
of executing a given process. The
focus was on the bottom line, and
the goal was to improve operational
efficiency.

A major shift came with the PC.
It was more powerful than green-
screen terminals, and it found its way
onto more desks. As a result, new ar-
eas of the business were supported
by IT, including areas for which no
off-the-shelf software existed. So,

in response, enterprises started ask-
ing their internal IT departments to
build custom applications.

There was obviously some col-
laboration between the people
commissioning and using the IT
systems, often simply referred to
as “the business,” and the people
building the systems, the IT de-
partment. However, IT was still
considered a tool, and IT depart-
ments were treated as a cost cen-
ter. This led organizations to a
project-centric view of IT and to
introducing a clear separation be-
tween development and operations.
The project-centric approach cre-
ated a culture in which the on-time
and on-budget delivery of a fixed
set of requirements within a project
context became the supreme goal.
IT departments created ever more
formal and elaborate processes to
prove that they held up their end of
the bargain. I have seen more than
a few cases where that was deemed
more important than creating ac-
tual value for the organization as a
whole.

The PC brought another inno-
vation: office packages, including
word processors and spreadsheets.
Through macros, embedded pro-
gramming capabilities, and integra-
tion mechanisms, these packages
became a powerful platform that
the business side used to implement
complex solutions on its own. One
of the key drivers for this was that
the IT departments had come up
with the rigid processes mentioned
above, effectively discouraging the
business side from interacting with
them, when, actually, the business
needed closer collaboration.

Building systems outside the IT
department became so common that
a term was coined for it: shadow
IT. Unfortunately, while improving

72	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE ENGINEERING’S 50TH ANNIVERSARY

collaboration, shadow IT is also
expensive. Studies have found that
30% to 50% of IT spending can be
on shadow IT, and it introduces a
significant business risk.1

Technology Becomes
the Business
Closer collaboration gave some busi-
nesspeople an important insight:
while they could treat IT as a cost
center, they could, instead, also view
IT as an enabler. When used well,
technology could give their organi-
zation a competitive advantage in
the market, not because they could
deliver existing products more effi-
ciently but because they could offer
something new. They had hit on the
concept of technology-driven differ-
entiation. They became less inter-
ested in figuring out how to reduce
the cost of delivering an IT project
and more interested in finding out
how much money they could make
with a new technology-led product.

With the rise of the dot-com
economy, this trend continued, and
companies sprang up for whom
technology was the business. They

did not differentiate their products
through the use of technology; they
existed only because of technology
(see Figure 1).

For companies that adopted a
view of IT as an enabler, the then-
dominant project-focused view of
building software did not work
well.2 Some organizations experi-
mented with different approaches,
culminating in the Manifesto for
Agile Software Development in 2001.

From personal experience, I can
say that one industry that saw the
new potential of IT early was invest-
ment banking. In trading especially,
technology became a key differentia-
tor. As a response, many front-office
groups adopted agile software devel-
opment in the early 2000s.

Another industry that visibly used
a collaborative and product-focused
approach was the start-ups of the dot-
com boom. Certainly, the dot-com
crash, as well as stories about haphaz-
ard engineering and operations prac-
tices, did much to discredit the working
mode of these start-ups, However, in
hindsight, it seems obvious that they
had been onto something.

Cycle Time Is Key
When an organization relies on tech-
nology to differentiate itself or when
technology is at the core of its business,
cycle time becomes key. The quicker
an organization can take a new busi-
ness idea and turn it into software run-
ning in production, the better.

Previously, organizations had fo-
cused mostly on two factors: on re-
liability, in the sense of a reliable
process to turn business require-
ments into working software, and
on throughput, that is, delivering
the maximum number of features
with a given development capacity.
Analogous to the saying, “Never un-
derestimate the bandwidth of a sta-
tion wagon loaded with tape,” high
throughput is not linked to a short
cycle time. In fact, a lot of organiza-
tions had improved, or attempted to
improve, reliability and throughput at
the expense of cycle time.

Conversely, organizations who
focus on cycle time cannot simply
ignore reliability and throughput,
which means that they have to come
up with an approach that delivers all
three. Close collaboration lies at the
heart of the solution.

Agile software development pro-
motes collaboration and introduces
short feedback cycles on multiple
levels. By releasing a version of the
software that is still incomplete
but already usable, real user or cus-
tomer feedback becomes available.
This feedback is then used to direct
the development effort, which in-
creases the reliability of the process
to deliver what is needed. Through-
put is increased, too, because little
to no effort is put into unneeded fea-
tures. This concept is often described
as “waste minimization,” a term bor-
rowed from lean manufacturing.3

Businesses that have technol-
ogy at their core often do not know

FIGURE 1. The changing role of technology. For many companies, technology has

become the business.

Supporting role
(1960–1970)

Business Business Business Business

Collaboration
(1980)

Technology-driven
differentiation

(1990)

Technology
is the business

Tech

Tech
Tech

Tech

	 SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE � 73

with certainty what they need to de-
liver next in order to stay ahead of
their competition. Product manag-
ers merely have hypotheses that need
validation. In this situation, the ef-
fect of fast feedback is even more
pronounced. Release cycles com-
mon in project-centric organizations,
measured in quarters or even years,
would be prohibitively long.

More than Agile Software
Development
Following many implementations
of agile development approaches,
around 2008, it became appar-
ent that there were shortcomings
on both ends of the software de-
velopment process that still had to
be addressed in order to reduce
cycle time. On one end, having well-
tested, continuously integrated soft-
ware in version control does not
help the business. The software has
to be in production, and the path to
production must be short and free of
obstacles, which it usually was not.
On the other end, business people
often cannot describe the require-
ments for the systems they need to
the development teams, whether
they are agile or not.

From the Internet start-ups, some
of which have evolved into giants,
we learned to shift from project-
focused to product-focused think-
ing.4 Rather than separating the
lifecycle of software into distinct
phases, with separate teams for
each, the team boundaries are re-
drawn, bundling responsibility for
continued evolution of software and
its operation in one team. Werner
Vogels, chief technology officer of
Amazon, famously summarized this
approach as “you build it, you run
it.”5 These cross-functional teams
are normally kept small, around 8 to
12 people, so that they can maintain

a focus on a specific aspect of the
overall product. Spotify was one of
the early companies to implement
these concepts, also exploring strate-
gies to scale them.6

While this approach was rela-
tively easy to follow in start-ups,
larger enterprises struggled to tran-
sition to this new world. It had been
difficult to learn agile development.
Replacing teams grouped by func-
tional specializations such as data-
bases, front ends, or back ends with
small, cross-functional teams caused
further friction and resistance. And
bringing together development and
operations was exceptionally hard
because in many cases they were ex-
plicitly separated, to the point where
different vendors, sometimes located
on different continents, could be
responsible for either.

DevOps and DesignOps
At the same time, practitioners
from development and operations
teams felt increasing levels of pain
and frustration as their priorities
collided more and more often. De-
velopment teams had been taught
to focus on on-time and on-budget
delivery. They often did this at the
expense of stability and maintain-
ability, because they knew they
would not be measured on the lat-
ter, never mind being held account-
able. Operations teams, on the other
hand, were measured on stability
and the cost of operations. This
made them uncomfortable with any
new release and led them to intro-
duce complicated formal processes,
resulting in less collaboration and
long cycle times.

Similarly to the early stages
of agile software development, it
was practitioners who joined in
a grass-roots movement, called
DevOps, to resolve the conflict. The

devopsdays conference series, which
began in 2009, played a central role.
Reports show that while the prob-
lem was well understood, practical
solutions were not commonplace.7
Nonetheless, practitioners began
to explore how they could, in their
organizations, transition to a model
that not only allowed but also pro-
moted close collaboration between
development and operations teams.

DevOps and, more specifically,
the collection of techniques and
tools known as continuous deliv-
ery cleared the path to production.
In the best case, individual chunks
of functionality, captured by user
stories, can be developed and de-
ployed into production in day or
two, not in weeks or months. To-
day, sizeable IT departments, com-
prising many product teams, can
manage hundreds of releases of re-
lated pieces of software into pro-
duction every week.

This possibility of dramatically
reduced cycle time motivated many
organizations to try to move toward
a DevOps culture. For decision mak-
ers who still needed convincing, the
2014 State of DevOps Report pro-
vided evidence that “high IT per-
formance correlates with strong
business performance.”8 The au-
thors later provided more insights
into why they felt confident making
this assertion.9

With cycle time, we should mea-
sure the time between an idea and
its realization as software in produc-
tion. User stories in agile develop-
ment are already much more than
an idea, and many organizations
that introduced agile development
struggled with writing appropri-
ate user stories. Oftentimes, large
backlogs of detailed stories were cre-
ated, bearing an eerie resemblance
to detailed specification documents

74	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE ENGINEERING’S 50TH ANNIVERSARY

of days past. In response, the focus
turned to improving where the user
stories came from.10

In a movement almost symmetri-
cal to DevOps, organizations started
to include user experience into their
IT departments, to ensure that the
actual needs of the business were
represented in the user stories. The
user experience experts brought new
techniques such as design thinking
and user research that added further
feedback cycles. They also pushed
for explicitly capturing hypotheses
about features and validating them
with data gathered from actual use
of the system, a technique known as
hypothesis-driven development.11

Now, quickly picking up insights
from the DevOps movement, design-
ers and developers are taking steps to
collaborate closely. They use new tools
that enable them to work jointly on
the same technical artifacts. This is
sometimes known as DesignOps and
is practiced at Airbnb, for example.12

Enabling Techniques
and Technologies
While this article focuses on the or-
ganizational changes that allowed
businesses to get more out of IT,
it is important to note that a num-
ber of breakthroughs in technology
and software engineering techniques
went hand in hand with the organi-
zational changes.

The practices collected in Extreme
Programming, most notably test-
driven development and continuous
integration, gave development teams
the necessary boost in confidence to
release software more frequently. Be-
cause of the absence of unpredictable
merges, these practices also made the
process more reliable.

Service-oriented architecture, later
refined by the concept of mi-
croservices, provides independent

evolvability. With such an archi-
tecture, the small, cross-functional
teams described above can each
work independently on their part of
the overall IT landscape. Techniques
such as consumer-driven-contract
testing13 and micro frontends14 often
allow teams to release services into
production without testing them in
an integration environment first. In
fact, for organizations that release
software many times a day, it is sim-
ply not possible to run extensive in-
tegration tests in a preproduction
environment.

Another important innovation
was virtualized infrastructure. Rather
than manually deploying an appli-
cation on an OS manually installed
on a physical server, modern services
are running in virtual machines or
containers, and each step of their de-
ployment is fully automated. In the
past, the lifecycle of an OS installed
on a server was longer than that of
the applications running on it. New
versions of an application would be
installed onto existing servers, often
sharing the same OS with other ap-
plications. Today, the lifecycle of the
entire (virtual) machine is linked to
the lifecycle of a single version of a
service, and a machine usually ex-
ists with only one service deployed
on it. This greatly reduces dependen-
cies and improves the reliability of
deployments.

When developers and opera-
tions people started working closely
together, the developers brought
more automation with them. Rather
than configuring servers manually,
they saw infrastructure as code.15
Scripts that can set up the entire de-
ployment infrastructure, including
software-defined networking, are
managed just like the source code
of the services running on them.
Rebuilding the infrastructure is

treated in the same way as releas-
ing a new version of a service, and
it can be done with the same speed
and reliability.

W hen technology be-
comes the business, or
when a business relies

on technology to offer differenti-
ated products, collaboration is key.
We have seen a shift to small, cross-
functional teams where engineers
with different specializations collab-
orate. The DevOps and DesignOps
movements bring closer collabora-
tion between all roles involved in the
life of an IT solution. In combination
with agile software development,
this has allowed the business and IT
to collaborate efficiently.

Today, organizations that have
mastered the concepts described in
this article consider their IT land-
scape a digital platform. Business-
centric services that can evolve
quickly and independently, com-
bined with frequent and reliable re-
leases, finally put the old dream of
reusable and recombinable compo-
nents within reach for them. The or-
ganizations can innovate and move
fast because their whole approach
to IT allows them to experiment at
scale.

References
	 1.	P. Bendor-Samuel, “How to Elimi-

nate Enterprise Shadow IT,” CIO,

11 Apr. 2017; https://www.cio.com

/article/3188726/it-industry/how

-to-eliminate-enterprise-shadow-it

.html.

	 2.	S. Narayan, Agile IT Organization

Design: For Digital Transformation

and Continuous Delivery, Addison-

Wesley, 2015, ch. 8 and 9.

	 3.	M. Poppendieck and T. Poppendi-

eck, Implementing Lean Software

	 SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE � 75

Development: From Concept to

Cash, Addison-Wesley, 2006, ch. 4.

	 4.	D. West et al., Product-Centric

Development Is a Hot New Trend,

Forrester, 2009.

	 5.	J. Gray, “A Conversation with

Werner Vogels,” ACM Queue,

vol. 4, no. 4, 2006, pp. 14–22.

	 6.	H. Kniberg and A. Ivarsson, “Scaling

Agile @ Spotify with Tribes, Squads,

Chapters & Guilds,” blog, 14 Nov.

2012; https://blog.crisp.se/2012

/11/14/henrikkniberg/scaling-agile

-at-spotify.

	 7.	D. Ackerson, “Back to the Roots:

Bridging the Deployment Gap,”

blog, 3 Nov. 2009; https://www

.agileweboperations.com/devopsdays

-2009.

	 8.	N. Forsgren Velasquez et al., 2014 State

of DevOps Report, Puppet, 2014;

https://puppet.com/resources

/whitepaper/2014-state-devops-

report.

	 9.	N. Forsgren, J. Humble, and G. Kim,

Accelerate: Building and Scaling

High Performing Technology Orga-

nizations, IT Revolution, 2018.

	10.	L. Ratcliffe and M. McNeill, Agile

Experience Design: A Digital

Designer’s Guide to Agile, Lean,

and Continuous, New Riders,

2011.

	11.	S. Klepper and B. Bruegge, “Impact

of Hypothesis-Driven Develop-

ment on Effectiveness, Quality, and

Efficiency in Innovation Projects,”

Lecture Notes in Informatics,

Gesellschaft für Informatik, 2018,

pp. 181–188.

	12.	A. Cleave, “DesignOps at Airbnb:

How We Manage Effective Design at

Scale,” Airbnb; https://airbnb.design

/designops-airbnb.

	13.	I. Robinson, “Consumer-Driven

Contracts: A Service Evolution Pat-

tern,” 12 June 2006; https://www

.martinfowler.com/articles

/consumerDrivenContracts.html.

	14.	T. Söderlund, “Micro Frontends—a

Microservice Approach to Front-End

Web Development,” Medium, 6 July

2017; 14. https://medium.com

/@tomsoderlund/micro-frontends-a

-microservice-approach-to-front

-end-web-development-f325ebdadc16.

	15.	K. Morris, Infrastructure as Code:

Managing Servers in the Cloud,

O’Reilly Media, 2016.

ABOUT THE AUTHOR

ERIK DÖRNENBURG is a software developer, a consultant, and

a Head of Technology at ThoughtWorks, where he helps clients write

custom software. Over the years he has worked with numerous

technologies and technology platforms, aiming to understand their

potential for solving real-world problems. Dörnenburg received a

degree in informatics from the University of Dortmund. Contact him

at erik@thoughtworks.com.

