
Requirements Engineering

Version 1.11 – 26 October 2016

© Maurizio Morisio, Marco Torchiano, 2016

Software development

Requirements
Analysis

System
Design

Detailed
Design

Coding

Unit testing

Integration
testing

System
testing

Customer
Needs

Acceptance
testing

The all-too-common problem

2017/2018

Ambient intelligence 4

Still more accurate…

2017/2018

Ambient intelligence 5

Requirements engineering

▪ The process of establishing the
services that the customer requires
from a system and the constraints
under which it operates and is
developed.

▪ The requirements themselves are the
descriptions of the system services
and constraints that are generated
during the requirements engineering
process.

Activities in req. engineering

▪ Elicitation

▪ Analysis

▪ Formalization

▪ V&V (verification and validation)

Requirements vs. Design

▪ Requirements

What the system should do

▪ Design

How the system is structured

What is a requirement?

▪ It may range from a high-level abstract
statement of a service or of a system
constraint to a detailed mathematical
functional specification.

▪ This is inevitable as requirements may serve
a dual function

 May be the basis for a bid for a contract -
therefore must be open to interpretation;

 May be the basis for the contract itself -
therefore must be defined in detail;

▪ Both these statements may be called
requirements.

Types of requirement

▪ User requirements
– Statements in natural language plus diagrams

of the services the system provides and its
operational constraints. Written for customers.

▪ System requirements (a.k.a. developer
requirements)

– A structured document setting out detailed

descriptions of the system’s functions,
services and operational constraints. Defines
what should be implemented so may be part
of a contract between client and contractor.

Definitions and specifications

The software must provide a means of representing
and accessing external files edited by other tools

1.1 The user should be provided with facilities to define the
type of external files

1.2 Each external file type may have an associated tool
which may be applied to the file

1.3 Each external file type may be represented as a specific
icon on the user’s display

1.4 Facilities should be provided for the icon representing an
external file type to be defined by the user

1.5 When a user selects an icon representing an external
file the effect of that selection is to apply the tool
associated with the external file type to the file
represented by the selected icon

User requirement definition

System requirements specification

Specification diagrams

Requirements readers

(Software)System
Requirements

Software Design
Specification

User
Requirements

Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

Client engineers
System architects
Software developers

Functional vs. non-functional

▪ Functional requirements

 Statements of services the system should provide,
how the system should react to particular inputs and
how the system should behave in particular
situations.

▪ Non-functional requirements

 Aka Quality requirements

 constraints on the services or functions offered by
the system such as timing constraints, constraints on
the development process, standards, etc.

▪ Domain requirements
– Requirements that come from the application domain of

the system and that reflect characteristics of that domain.

Example: The LIBSYS system

▪ A library system that provides a
single interface to a number of
databases of articles in different
libraries.

▪ Users can search for, download and
print these articles for personal study.

Examples functional req.

FR1: The user shall be able to search either
all of the initial set of databases or
select a subset from it.

FR2: The system shall provide appropriate
viewers for the user to read
documents in the document store.

FR3: Every order shall be allocated a
unique identifier (ORDER_ID) which
the user shall be able to copy to the
account’s permanent storage area.

Requirements imprecision

▪ Problems arise when requirements are
not precisely stated.

▪ Ambiguous requirements may be
interpreted in different ways by
developers and users.

▪ Consider the term ‘appropriate
viewers’
User intention - special purpose viewer for

each different document type;
Developer interpretation - Provide a text

viewer that shows the contents of the
document.

Good Requirements

▪ Correct

▪ Unambiguous

▪ Complete

▪ Consistent

▪ Ranked for importance and/or stability

▪ Verifiable

▪ Modifiable

▪ Traceable

Correct

▪ Every requirement stated is one that

the software shall meet

▪ Customer or users can determine if

the requirement correctly reflects their

actual needs

 Traceability makes this easier

Unambiguous

▪ Every requirement has only one

interpretation

▪ Each characteristic of the final product

must be described using a single

unique term

▪ Both to those who create it and to
those who use it.

Complete

▪ Include all significant requirements

 Address external requirements imposed

by system specification

▪ Define response to all realizable

inputs

 Both correct or incorrect

▪ Define all terms and unit of measure

Internally Consistent

▪ No subset of requirements is in

conflict

 Characteristics of real-world objects (e.g.

GUI

 Logical or temporal

 Different terms for the same object

Completeness vs. consistency

▪ In principle, requirements should be both
complete and consistent.

 Complete: they should include descriptions
of all facilities required.

 Consistent: there should be no conflicts or
contradictions in the descriptions of the
system facilities.

 In practice, it is impossible to produce a
document that is both complete and
consistent
– See: Gödel's incompleteness theorems

Ranked

▪ Stability in the future

▪ Necessity

 Essential

 Conditional

 Optional

Verifiable

▪ There exists some finite cost-effective

process with which a person or
machine can check that the software

product meets the requirement.

 Ambiguous requirements are not

verifiable

Modifiable

▪ structure and style such that any

changes can be made easily,
completely, and consistently while

retaining the structure and style

 Well structured

 Non redundant

 Separate requirements

Traceable

▪ Backward

 explicitly referencing source in earlier

documents

▪ Forward

 unique name or reference number

Defects in requirements

▪ Omission/ incompleteness

▪ Inconsistency/contradiction

▪ Ambiguity

▪ Incorrect Fact

▪ Extraneous Information

 Over-specification (design)

▪ Unstructured

▪ Redundancy

Non-functional requirements

▪ These define system properties and
constraints e.g. reliability, response time and
storage requirements. Constraints are I/O
device capability, system representations, etc.

▪ Process requirements may also be specified
mandating a particular CASE system,
programming language or development
method.

▪ Non-functional requirements may be more
critical than functional requirements. If these
are not met, the system is useless.

Non-functional classifications

▪ Product requirements
– Requirements which specify that the delivered

product must behave in a particular way e.g.
execution speed, reliability, etc.

▪ Organisational requirements
– Requirements which are a consequence of

organisational policies and procedures e.g. process
standards used, implementation requirements, etc.

▪ External requirements
– Requirements which arise from factors which are

external to the system and its development process
e.g. interoperability requirements, legislative
requirements, etc.

Non-functional requirements

ISO 9126

▪ Software product quality

 Issued 1991, revised 2001

 Being replace by ISO/IEC 250xx

– SQuaRE (Software product Quality Requirements and
Evaluation)

ISO/IEC FDIS 25010:2010(E)

© ISO/IEC 2010 – All rights reserved 27

C.3 Approaches to quality

Figure C.2 — Quality in the lifecycle

User needs for quality include requirements for system quality in use in specific contexts of use. These
identified needs can be used when specifying external and internal measures of quality using software product
quality characteristics and subcharacteristics.

Software product quality can be evaluated by measuring internal properties (typically static measures of
intermediate products), or by measuring external properties (typically by measuring the behaviour of the code
when executed), or by measuring quality in use properties (when the product is in real or simulated use)
(Figure C.2).

Improving process quality (the quality of any of the lifecycle processes defined in ISO/IEC 12207 and
ISO/IEC 15288) contributes to improving product quality, and product quality contributes to improving system
quality in use. Therefore, assessing and improving a process is a means to improve product quality, and
evaluating and improving product quality is one means of improving the system quality in use. Similarly,
evaluating system quality in use can provide feedback to improve a product, and evaluating a product can
provide feedback to improve a process.

Appropriate internal properties of the software are a pre-requisite for achieving the required external behaviour,
and appropriate external behaviour is a pre-requisite for achieving quality in use (Figure C.2).

C.4 Quality influences

Figure C.3 illustrates the relationships among target entities of the quality model. The software lifecycle
processes (such as the quality requirements process, design process and testing process) influence the
quality of the software product and the system. The quality of resources, such as human resources, software
tools and techniques used for the process, influence the process quality, and consequently, influence the
product quality.

Software product quality, as well as the quality of other components of a system, influences the quality of the
system. The system quality has various influences (effects) depending on the contexts of use. The context of
use can be defined by a set of a user, a task, and the environment. Some examples of context of use are
shown in Table 1 (see 3.6).

ISO 9126 – Characteristics

Internal vs. External

▪ Internal features concern the static

attributes of a software product

 verified by review, inspection, simulation

and/or automated tools

▪ External features concern the behavior
of a system

 verified and/or validated by executing the

software product during testing and

operation

ISO 9126 – External measure

▪ Breakdown avoidance

Purpose How often can user avoid breakdown of system, even if
critical failures occurred?

Method of
application

Count the number of breakdowns occurrence with respect
to number of failures.
If it is under operation, analyze log of user operation
history.

Definition Breakdown avoidance ratio
X= 1- (A / B)
A= Number of breakdowns
B= Number of failures
NOTE: 1.The breakdown means executing of any user task is suspended
until system is restarted up, or its control is lost until system is enforced to
be shut down.
2. When none or a few failures observed, time between breakdown may be
more suitable.

Interpretation 0<= X <= 1 The closer to 1.0 is the better.

ISO 9126 – Internal measure

▪ Test coverage

Purpose How much of the required test cases are covered by the
test plan?

Method of
application

Count the number of test cases planned and compare it to
the number of test cases required to obtain adequate test
coverage.

Definition X=A/B
A=Number of test cases designed in test plan
and confirmed in review
B= Number of test cases required

Interpretation 0<= X Where X is the greater the better adequacy

ISO 9126

▪ Functionality

▪ Reliability

▪ Usability

▪ Efficiency

▪ Maintainability

▪ Portability

Non-functional req.: examples

▪ Product requirement

– 8.1 The user interface for LIBSYS shall be implemented
as simple HTML without frames or Java applets.

▪ Organisational requirement

– 9.3.2 The system development process and deliverable
documents shall conform to the process and
deliverables defined in XYZCo-SP-STAN-95.

▪ External requirement

– 7.6.5 The system shall not disclose any personal
information about customers apart from their name
and reference number to the operators of the system.

Goals and requirements

▪ Non-functional requirements may be very
difficult to state precisely and imprecise
requirements may be difficult to verify.

▪ Goal

 A general intention of the user such as ease of use.

▪ Verifiable non-functional requirement

 A statement using some measure that can be objectively
tested.

▪ Goals are helpful to developers as they
convey the intentions of the system users.

Examples

▪ A system goal

 The system should be easy to use by
experienced controllers and should be
organised in such a way that user errors are
minimised.

▪ A verifiable non-functional requirement

 Experienced controllers shall be able to use all
the system functions after a total of two hours
training. After this training, the average
number of errors made by experienced users
shall not exceed two per day.

Requirements measures
Property Measure

Speed Processed transactions/second

User/Event response time

Screen refresh time

Size M Bytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems

Requirements interaction

▪ Conflicts between different non-
functional requirements are common
in complex systems.

▪ Spacecraft system
– To minimise weight, the number of separate

chips in the system should be minimised.

– To minimise power consumption, lower
power chips should be used.

– However, using low power chips may mean
that more chips have to be used. Which is
the most critical requirement?

Development requirements

▪ Who are the project participants?

▪ What values will be reflected in the project
(simple, soon, fast, or flexible)?

▪ What feedback or project visibility do the
users and sponsors wish?

▪ What can we buy, what must we build, what is
our competition to this system?

▪ What other process requirements are there
(testing, installation, etc.)?

▪ What dependencies does the project operate
under?

Domain requirements

▪ Derived from the application domain and
describe system characteristics and
features that reflect the domain.

▪ Domain requirements be new functional
requirements, constraints on existing
requirements or define specific
computations.

▪ If domain requirements are not satisfied,
the system may be unworkable.

LIBSYS domain requirements

▪ There shall be a standard user interface to
all databases which shall be based on the
Z39.50 standard.

▪ Because of copyright restrictions, some
documents must be deleted immediately on

arrival. Depending on the user’s
requirements, these documents will either
be printed locally on the system server for
manually forwarding to the user or routed
to a network printer.

Train protection system

▪ The deceleration of the train shall
be computed as:

 Dtrain = Dcontrol + Dgradient

where

Dgradient is 9.81ms2 * compensated
gradient/alpha

and where the values of 9.81ms2 /alpha
are known for different types of
train.

Domain req. problems

▪ Understandability

 Requirements are expressed in the
language of the application domain;

 This is often not understood by
software engineers developing the
system.

▪ Implicitness

 Domain specialists understand the area
so well that they do not think of making
the domain requirements explicit.

User requirements

▪ Should describe functional and non-
functional requirements in such a way
that they are understandable by

system users who don’t have detailed
technical knowledge.

▪ User requirements are defined using
natural language, tables and
diagrams as these can be understood
by all users.

Problems, natural language

▪ Lack of clarity

 Precision is difficult without making the
document difficult to read.

▪ Requirements confusion

 Functional and non-functional
requirements tend to be mixed-up.

▪ Requirements amalgamation

 Several different requirements may be
expressed together.

Problems, NL

▪ Ambiguity
– The readers and writers of the requirement

must interpret the same words in the same
way. NL is naturally ambiguous so this is
very difficult.

▪ Over-flexibility
– The same thing may be said in a number of

different ways in the specification.

▪ Lack of modularisation
– NL structures are inadequate to structure

system requirements.

LIBSYS requirement

4..5 LIBSYS shall provide a financial accounting

system that maintains records of all payments made

by users of the system. System managers may

configure this system so that regular users may

receive discounted rates.

Editor grid requirement

2.6 Grid facilities To assist in the positioning of entities on a diagram,

the user may turn on a grid in either centimetres or inches, via an

option on the control panel. Initially, the grid is off. The grid may be

turned on and off at any time during an editing session and can be

toggled between inches and centimetres at any time. A grid option

will be provided on the reduce-to-fit view but the number of grid

lines shown will be reduced to avoid filling the smaller diagram

with grid lines.

Requirement problems

▪ Database requirements includes both conceptual
and detailed information

 Describes the concept of a financial accounting system
that is to be included in LIBSYS;

 However, it also includes the detail that managers can
configure this system - this is unnecessary at this level.

▪ Grid requirement mixes three different kinds of
requirement

 Conceptual functional requirement (the need for a grid);

 Non-functional requirement (grid units);

 Non-functional UI requirement (grid switching).

Structured presentation

The requirements document

▪ The requirements document is the
official statement of what is required of
the system developers.

▪ Should include both a definition of user
requirements and a specification of the
system/developer requirements.

▪ It is NOT a design document. As far as
possible, it should set of WHAT the
system should do rather than HOW it
should do it

Users of requirements

System
customers

Managers

System
engineers

System test
engineers

System
maintenance

engineers

Specify the requirements and read them
to check that they meet their needs. They

specify changes to the requirements

Use the requirements document to plan a
bid for the system and to plan the system

development process

Use the requirements to understand what
system is to be developed

Use the requirements to develop
validation tests for the system

Use the requirements to help understand
the system and the relationship between

its parts

IEEE requirements standard

▪ IEEE Std 830:1998

 Superseded by ISO/IEC/IEEE 29148:2011

▪ Defines a generic structure for a
requirements document that must be
instantiated for each specific system.

 Introduction.

 Overall description.

 Specific requirements.

 Appendixes.

 Index.

Req. document structure

▪ Preface

▪ Introduction

▪ Glossary

▪ User requirements definition

▪ System architecture

▪ System requirements specification

▪ System models

▪ System evolution

▪ Appendices

▪ Index

Organizing requirements

▪ Mode

▪ User class

▪ Object

▪ Feature

▪ Stimulus

▪ Functional hierarchy

Requirements Document simplified

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

• What is the overall scope and goal?

• Stakeholders (who cares?)

• What is in scope, what is out of scope

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

• The primary actors and their general goals

• The business use cases (operations concepts)

• The system use cases

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

• What technology requirements are there for this
system?

• What systems will this system interface with, with
what requirements?

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

• Development process

• Business rules

• Performance

• Operations, security, documentation

• Use and usability

• Maintenance and portability

• Unresolved or deferred

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

• What is the human backup to system operation?

• What legal, what political requirements are there?

• What are the human consequences of completing

this system?

• What are the training requirements?

• What assumptions, dependencies are there on

the human environment?

Guidelines for requirements

▪ Define a standard format and use it
for all requirements.

▪ Use language in a consistent way. Use
shall for mandatory requirements,
should for desirable requirements.

▪ Use text highlighting to identify key
parts of the requirement.

▪ Avoid the use of computer jargon.

System/developer requirements

▪ More detailed specifications of
system functions, services and
constraints than user requirements.

▪ They are intended to be a basis for
designing the system.

▪ They may be incorporated into the
system contract.

▪ System requirements may be defined
or illustrated using system models
(UML)

Requirements and design

▪ In principle, requirements should state what
the system should do and the design should
describe how it does this.

▪ In practice, requirements and design are
inseparable

 A system architecture may be designed to
structure the requirements;

 The system may inter-operate with other
systems that generate design requirements;

 The use of a specific design may be a domain
requirement.

Alternatives to NL specification

Notation Description

Structured natural
language

This approach depends on defining standard forms or templates to express the
requirements specification.

Design
description

languages

This approach uses a language like a programming language but with more abstract
features to specify the requirements by defining an operational model of the system.

This approach is not now widely used although it can be useful for interface
specifications.

Graphical
notations

A graphical language, supplemented by text annotations is used to define the
functional requirements for the system. An early example of such a graphical

language was SADT. Now, use-case descriptions and sequence diagrams are

commonly used .

Mathematical

specifications

These are notations based on mathematical concepts such as finite-state machines or

sets. These unambiguous specifications reduce the arguments between customer and
contractor about system functionality. However, most customers don’t understand

formal specifications and are reluctant to accept it as a system contract.

Structured language

▪ The freedom of the requirements writer is
limited by a predefined template for
requirements.

▪ All requirements are written in a standard
way.

▪ The terminology used in the description
may be limited.

▪ The advantage is that the most of the
expressiveness of natural language is
maintained but a degree of uniformity is
imposed on the specification.

Form-based specifications

▪ Definition of the function or entity.

▪ Description of inputs and where they come
from.

▪ Description of outputs and where they go to.

▪ Indication of other entities required.

▪ Pre and post conditions (if appropriate).

▪ The side effects (if any) of the function.

Form-based

Tabular specification

▪ Used to supplement natural language.

▪ Particularly useful when you have to
define a number of possible
alternative courses of action.

Tabular specification

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of

increase decreasing ((r2-r1)<(r1-r0))

CompDose = 0

Sugar level increasing and rate of

increase stable or increasing. ((r2-r1) ≥

(r1-r0))

CompDose = round ((r2-r1)/4)

If rounded result = 0 then

CompDose = MinimumDose

Graphical models

▪ Graphical models are most useful
when you need to show how state
changes or where you need to
describe a sequence of actions.

▪ See UML, sequence diagrams.

Sequence diagrams

▪ These show the sequence of events
that take place during some user
interaction with a system.

▪ You read them from top to bottom to
see the order of the actions that take
place.

▪ Cash withdrawal from an ATM

 Validate card;

 Handle request;

 Complete transaction.

Example seq of ATM withdrawal

Interface specification

▪ Most systems must operate with other
systems and the operating interfaces must
be specified as part of the requirements.

▪ Three types of interface may have to be
defined

 Procedural interfaces;

 Data structures that are exchanged;

 Data representations.

▪ Formal notations are an effective technique
for interface specification.

PDL interface description

interface PrintServer {

// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue,

cancelPrintJob, switchPrinter

void initialize (Printer p) ;
void print (Printer p, PrintDoc d) ;
void displayPrintQueue (Printer p) ;
void cancelPrintJob (Printer p, PrintDoc d) ;
void switchPrinter (Printer p1, Printer p2,

PrintDoc d) ;
} //PrintServer

User interfaces

▪ Mostly non-functional

 Elements of functional reqs (input)

▪ Prototypes are essential

 Provide clear information to developers

 Get feedback from users

 Get commitment

V&V of requirements

▪ Natural language, UML

 Inspection, reading
– By user, by developer

▪ UML

 Some syntactic check by tools

▪ Formal language

 Model checking

Tools

▪ RequisitePro, Doors, Serena RM

▪ Word, Excel

▪ UML tools

 Powerpoint, Visio, specialized tools
(StarUML)

References

▪ IEEE Recommended Practice for

Software Requirements Specifications
(IEEE Std 830-1998, Revision of IEEE

Std 830-1993)

▪ ISO/IEC 250xx:2011 - Systems and
software engineering - Systems and

software Quality Requirements and
Evaluation (SQuaRE)

Key points

▪ Requirements set out what the system should
do and define constraints on its operation
and implementation.

▪ Functional requirements set out services the
system should provide.

▪ Non-functional requirements constrain the
system being developed or the development
process.

▪ User requirements are high-level statements
of what the system should do. User
requirements should be written using natural
language, tables and diagrams.

Key points

▪ System requirements are intended to
communicate the functions that the
system should provide.

▪ A software requirements document is an
agreed statement of the system
requirements.

▪ The IEEE standard is a useful starting
point for defining more detailed specific
requirements standards.

