
Use cases

Version 2.6 – November 2015

© Maurizio Morisio, Marco Torchiano, 2014

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

Functional model – Use cases

5

History

 Introduced by Ivar Jacobson in 1992

 codified a visual modelin technique

 Found widespread adoption in the
1990's

 initially in the Object-Oriented community

Use case

 Captures a contract between the stakeholders
of a system about its behavior.

 Describes the system’s behavior under
various conditions as it responds to a request

 from a stakeholder, the primary actor.

 The primary actor initiates an interaction with
the system to accomplish some goal.

 The system responds, protecting the interests
of all the stakeholders.

Purpose

 Describes business’ work process,

 Focus discussion about up coming
software system requirements,

 not a requirements description substitute

 Functional requirements for a system

 Document the design of the system

Requirements and Use Cases

 They can represent the functional
(behavioral) requirements

 If properly written

 They miss

 External interfaces

 Data formats

 Business rules

10

Definition

A use case describes a goal-oriented

set of interactions between external

actors and the system under

consideration.

Key elements

Actor

System

Interactions

12

Key elements

 The actor involved

 type of user that interacts with the system

 The system being used

 treated as a black-box

 The functional goal that the actor
achieves using the system

 the reason for using the system

13

Description

 Use cases describe the sequence of
interactions between actors and the
system

 to deliver the service that satisfies the goal

 They also include possible variants of
this sequence

 either successful or failing

14

Actor

 Actors are parties outside the system
that interact with the system.

 An actor may be a class of users, roles
users can play, or other systems.

 A primary actor is one having a goal
requiring the assistance of the system.

 A secondary actor is one from which the
system needs assistance.

Actor

 External entities:

 Which persons interact with the system
(directly or indirectly)?
– Don’t forget maintenance staff!

 Will the system need to interact with
other systems or existing legacy systems?

 Are there any other hardware or software
devices that interact with the system?

 Are there any reporting interfaces or
system administrative interfaces?

17

Goals

 The use case cares only what is the
relationship of the actor to the system

 The goal must be of value to the
(primary) actor:

 “Enter PIN code” is not

 “Withdraw cash” is

Goal

As a <actor type>

I want <to do something>

So that <some value is created>

Goal

As a <actor type>

I want <to do something>

So that <some value is created>

bank customer

to perform a withdrawal

I get some cash for me

Stakeholders and interests

 The system under design operates a
contract between stakeholders

 Use cases detail the behavioral part

 Use case captures all and only the
behaviors related to satisfy the
stakeholders’ interests

 See Guarantees section

Scope

 The extent of what we consider to be
designed by us

 Not already existing

 Not someone else's design job

 Defined by

 In-out list

 Actor-Goal list

 Use case briefs

Scope

 Enterprise

 Business use cases

 Software System

 System use cases

 Software Component

In-out list

 What lies in or out of scope

Actor-goal list

 Actors and corresponding goals + Priority

 See UML Use Case Diagrams

Actor-goals as UC Diagram

Use case briefs

 Summary consisting of 2-6 sentences

 What is going on

 Most significant activities

30

Precision

 How much detail is provided

 Brief

 few sentences summarizing the use case

 Casual

 few paragraphs of text elaborating the use
case in the form of a summary or story

 Detailed

 formal document based on a long template
with fields for various sections

USE CASE DIAGRAMS

32

Use case diagrams

 Use cases can be (collectively)
represented using UML use-case
diagrams

 Often the “brief” level of detail can be
useful in this context

33

Elements of use case diagrams

 Someone (user) or something
(external system, hardware) that

 Exchanges information with the
system

 Supplies input to the system, or
receives output from the system

 A functional unit (functionality)
part of the system

Actor

Use Case

34

Relations

 Association models:

 Which actors participate in a use
case

 Where execution starts

 Adornments (e.g. multiplicity,
direction) allowed

<<include>>

Actor
Use Case

Actor
Use Case

Use Case BUse Case A

Actor

Use Case

 Include

 Models that functionality A is used
in the context of functionality B
(one is a phase of the other)

35

Relations

 Actor Generalization

 A generalization from an
actor B to an actor A
indicates that an
instance of B can
communicate with the
same kinds of use-case
instances as an instance
of A

 UC Generalization

 Defines functionality B
as a specialization of
functionality A (e.g. a
special case)

Use Case BUse Case A

SalesPerson

Supervisor
Establish Credit

Place Order

36

Relations

 Extension

 An extend relationship
from use case B to use
case A indicates that an
instance of use case A
may be augmented by
the behavior specified by
B

 The behavior is inserted
at the location defined
by the extension point
(name : where) in A,
which is referenced by
the extend relationship

Use Case B

<<extend>>

Use Case A

Extension points

bigError : event X

<<include>>

Use Case C

Use case - Example

Granularity

 Summary level is the 50,000 feet
perspective,

 User-goal level is the sea-level
perspective,

 Subfunction is the underwater
perspective.

Summary level

 Summary level use cases:

 are large grain use cases that encompass
multiple lower-level use cases; they
provide the context (lifecycle) for those
lower-level use cases.

 they can act as a table of contents for
user goal level use cases.

Summary level

 Use Case:

 Manage Funds By Bank Account

 Scope:

 Bank Accounts and Transactions System

 Intention in Context:

 The intention of the Client is to manage his/her funds by way of
a bank account. Clients do not interact with the System directly;
instead all interactions go through either: a Teller, a Web Client,
or an ATM, which one depends also on the service.

 Primary Actor: Client

 Main Success Scenario:

 1. Client opens an account.

 Step 2 can be repeated according to the intent of the Client

 2. Client performs task on account.

 3. Client closes his/her account

User Goal Level

 User-goal level use cases:

 describe the goal that a primary actor or
user has in trying to get work done or in
using the system.

 are usually done by one person, in one
place, at one time; the (primary) actor can
normally go away happy as soon as this
goal is completed.

User Goal Level

 Use Case: Deposit Money

 Scope: Bank Accounts and Transactions System

 Intention in Context:

 The intention of the Client is to deposit money on an account.
Clients do not interact with the System directly; instead, for this
use case, a client interacts via a Teller. Many Clients may be
performing transactions and queries at any one time.

 Primary Actor: Client

 Main Success Scenario:

 1. Client requests Teller to deposit money on an account,
providing sum of money.

 2. Teller requests System to perform a deposit, providing deposit
transaction details*.

 3. System validates the deposit, credits account for the amount,
records details of the transaction, and informs Teller.

User Goal Level

 Extensions:

 2a. Client requests Teller to cancel deposit: use case ends in failure.

 3a. System ascertains that it was given incorrect information:

– 3a.1. System informs Teller; use case continues at step 2.

 3b. System ascertains that it was given insufficient information to
perform deposit:

– 3b.1. System informs Teller; use case continues at step 2.

 3c. System is not capable of depositing (e.g. transaction monitor of
System is down)**:

– 3c.1. System informs Teller; use case ends in failure.

 Notes:

* a hyperlink to a document that contains data details and formats.

** this is an example of an IT infrastructure failure, we only write it in a use
case if there is a corresponding project constraint that states a physical
separation, e.g., transaction supported by a legacy system.

Subfunction level

 Subfunction level use cases

 provide “execution support” for user-goal
level use cases; they are low-level and
need to be justified, either for reasons of
reuse or necessary detail

Subfunction level

 Use Case: Identify Client

 Scope: Automatic Teller Machine (ATM for short)

 Intention in Context:

 The intention of the Client is to identify him/herself to the System. A project
(operational) constraint states that identification is made with a card and a personal
identification number (PIN).

 Primary Actor: Client

 Main Success Scenario:

 1. Client provides Card Reader with card; Card Reader informs System of card
details*.

 2. System validates card type.

 3. Client provides PIN to System.

 4. System requests BAT System to verify identification information*.

 5. BAT System informs System that identification information is valid, and System
informs Client.

Right level

 Too-much levels

 Very summary, cloud level

 Sub-subfunctions (black)

 Tendency to be too specific

 What does the primary actor really want?

 Why is this actor doing this?

Exercise

“Jenny is standing in front of her bank's
ATM. It is dark. She has entered her PIN,
and is looking for the 'Enter' button."

Name a summary, a user and a
subfunction goal for Jenny.

Answers

 Very Summary: Take some special one
out for dinner.

 Summary: Use the ATM

 User goal: Get money from the ATM.

 Subfunction: Enter PIN



 Sub-Subfunction: Find the Enter button.

USE CASE NARRATIVE

Template

 SWEED template

 One column (no table)

 Sequenced: Numbered steps (Dewey
decimal numbering system) and
extensions to main scenario use
alphabetic letters to differentiate from
main steps

http://diwww.epfl.ch/researchlgl/research/use_cases/RE-A2-case-studies/index.html

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.196.7782&rep=rep1&type=pdf

Template

 Use Case:

 Name of the use case. This is the goal
stated by a short active verb phrase.

 Scope:

 The scope of the “system” being
considered (black-/white- box and
enterprise/system/component).

 Level:

 Summary, User-goal, or Subfunction

Template

 Intention in Context:
 A statement of the primary actors intention

and the context within which it is performed.

 Primary Actor:
 The primary actor of the use case.

 *Stakeholders’ Interests:
 The list of stakeholders and their key

interests in the use case.

 *Precondition:
 What we can assume about the current state

of the system and environment.

Template

 *Minimum Guarantees:

 How the interests of the stakeholders are
protected in all circumstances.

 *Success Guarantees:

 The state of the system and environment
if the goal of the primary actor succeeds.

 *Trigger:

 What event starts the use case.

Template

 Main Success Scenario:

 <step_number> "." <action_description>
The numbered steps of the scenario, from
trigger to goal delivery, followed by any
clean-up.

 Conditions and alternatives are shown in
the extension part.

 *Extensions:

 <step_altered> <condition> ":"
<action_description> or <sub-use_case>

Template

 Steps can be nested. Dewey numbers are then
used, e.g. 3a.1

 An extension always refers to a step of the
Main Success Scenario.

 An extension step takes place in addition to
the respective main step, notation: 2 ||,

 or as an alternative, notation: 2a.

 An extension might correspond to regular
behavior, exceptional behavior that is
recoverable, or unrecoverable erroneous
behavior.

Main Success Scenario: Steps

 An interaction between two entitites

 Customer enters address

 A validation step to protect an interest
of a stakeholder

 System validate PIN code

 An internal change to satisfy a
stakeholder

 System deducts amount from balance

Actions steps

 Use a simple grammar

 <Subject> <verb> <direct object>
<prepositional phrase>

 Show clearly “who has the ball”

 Written from a bird’s eye pov

 Shows the process progressing

 Shows intent not movement

 Contains a reasonable set of actions

 Doesn’t “check whether”, “validates”

Action steps idioms

 Timing

 “At any time…” or

 “As soon as..”

 Trigger interaction with other system

 “User has System A kick System B”

 Repeat

 “Do steps x-y until condition”

 Parallel

 “Steps x-y can happen in any order”

Exercise

Mary, taking her two daughters to the day care on
the way to work, drives up to the ATM, runs her
card across the card reader, enters her PIN code,
selects FAST CASH, and enters $35 as the amount.
The ATM issues a $20 and three $5 bills, plus a
receipt showing her account balance after the $35
is debited. The ATM resets its screens after each
transaction with FAST CASH, so that Mary can drive
away and not worry that the next driver will have
access to her account.

Write the main success scenario for the task-level
use case "Withdraw money using FASTCASH option"

Answer

1. Customer runs ATM card through the card reader.

2. ATM reads the bank id and account number from the
card, validates them with the main computer.

3. Customer enters PIN.

4. ATM validates PIN.

5. Customer selects FASTCASH and withdrawal amount, a
multiple of $5.

6. ATM

a. notifies main banking system of customer account,
amount being withdrawn, and receives back
acknowledgement plus the new balance.

b. delivers the cash, card and a receipt showing the new
balance.

c. logs the transaction.

Alternatives

Goal
Subgoals:

Step 1:

Success Failure

Step 2:

Step 3:

S

S

S

S

S

F

SStep 4:

S

F

…

F

F

F

Extensions

 Brainstorm and include every
possibility

 Alternate success path

 Primary actor behaves incorrectly

 Inaction by the primary actor

 Negative outcome of validation

 Internal failure (expectable)

 Unexpected or abnormal failure

 Critical performance failure

Extensions

 The condition expresses what was detected

 Not what happened

 “PIN entry time-out” OK

 “Customers forgets PIN” Wrong

 The system must be able to detect the
condition

 Merge equivalent conditions

Exercise

 Brainstorm and list the things that
could go wrong during the operation
of an ATM.

Answer

 Card reader broken or card scratched

 Card for an ineligible bank

 Incorrect PIN

 Customer does not enter PIN in time

 ATM is down

 Host computer is down, or network is down

 Insufficient money in account

 Customer does not enter amount in time

 Not a multiple of $5

 Amount requested is too large

 Network or host goes down during transaction

 Insufficient cash in dispenser

 Cash gets jammed during dispensing

 Receipt paper runs out, or gets jammed

 Customer does not take the money from the dispenser

Precision stages

1. Actors and Goals
 Prioritized list of actors and their goals

2. Main success scenario
 Trigger and main success scenario

 Check meeting stakeholders interests

3. Failure conditions
 List of all possible failures

4. Failure handling
 How to respond to each failure

 Potentially revealing

74

Applying use cases

 Define the scope
 What’s in and what’s out

 Identify your actors:
 who will be using the system?

 Identify their goals:
 what will they be using the system to do?

 Write a use case brief
 2-6 sentences

 Detail the steps in main success scenario
 3-9 steps

 Identify failure conditions
 Which conditions the system can detect?

 Define failure handling

75

Warnings

 Use case alone are not the
requirements

 Use cases should be based on some
form of conceptual model or glossary

 Use cases should not include details
about the user interface

Typical errors

 Undefined or inconsistent system
boundary

 Take System’s viewpoint instead of
Actor’s

 Inconsistent Actor names

 Use cases refer to too many actors

 Spider’s web

Typical errors

 Too long specifications

 Confused specifications

 Use of conditional logic

 Attempt to describe algorithms

 Actor non fully entitled

 Customer not understanding

 Never ending use cases

 Dialog descriptions

 Long, over-constrained, brittle

SUMMARY

Pros

 Use case modeling is generally regarded
as an excellent technique for capturing
the functional requirements of a system.

 Use cases discourage premature design

 Use cases are traceable.

 Use cases can serve as the basis for the
estimating, scheduling, and validating
effort.

79

Pros

 Use cases are reusable within a
project.

 The use case can evolve at each iteration
from a method of capturing
requirements, to development guidelines
to programmers, to a test case and finally
into user documentation.

 Use case alternative paths capture
additional behaviour that can improve
system robustness.

80

Pros

 Use cases are useful for scoping.

 Use cases make it easy to take a staged
delivery approach to projects; they can be
relatively easily added and removed from
a software project as priorities change.

 Use cases have proved to be easily
understandable by business users, and
so have proven an excellent bridge
between software developers and end
users.

81

Pros

 Use case specifications don't use a
special language. They can be written
in a variety of styles to suit the
particular needs of the project.

 Use cases are concerned with the
interactions between the user and the
system.

 UI designers can get involved in the
development process either before or in
parallel with software developers.

82

Pros

 Use cases put requirements in
context, they are clearly described in
relationship to business tasks.

 Use case diagrams help stakeholders
to understand the nature and scope of
the business area or the system under
development.

83

Pros

 Test Cases (System, User Acceptance
and Functional) can be directly derived
from the use cases

 Use cases are critical for the effective
execution of Performance Engineering

84

Cons

 Use case flows are not well suited to
easily capturing

 non-interaction based requirements of a
system (such as algorithm or mathematical
requirements) or

 non-functional requirements (such as
platform, performance, timing, or safety-
critical aspects)

 Use cases templates do not automatically
ensure clarity. Clarity depends on the
skill of the writer(s).

85

References

 A.Cockburn, “Writing Effective Use
Cases”. Addison-Wesley, 2000.

 M.Fowler, “UML Distilled” IV Edition.
Addison-Wesley, 2010.

Inclusion vs. Precondition
UseCase Diagram0 2014/11/06 powered by Astah

 uc

user

Goal X

Login

< < include> >

Use case: Goal X
…
Main success scenario:
…
n. User performs Login
…

Use case: Goal X
…
Precondition:
-User performed Login
…

Use case: Login
…

UseCase Diagram0 2014/11/06 powered by Astah

 uc

user
Goal X

Login

