Requirements Engineering

Version 1.8 - 11 November 2012

© Maurizio Morisio, Marco Torchiano, 2012

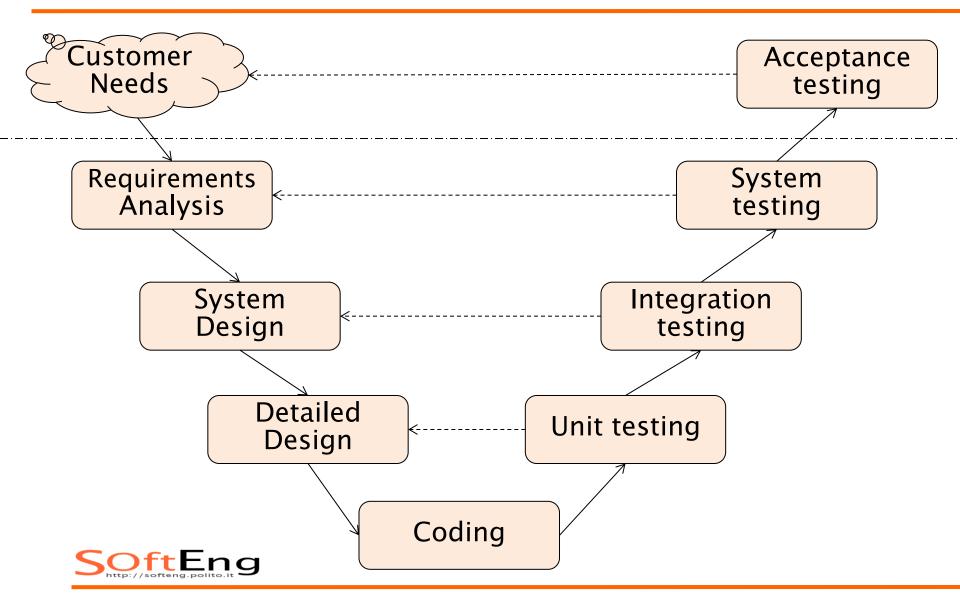
Attribution-NonCommercial-NoDerivs 2.5

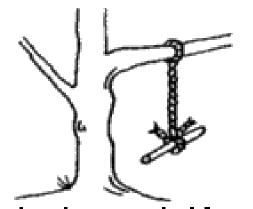
• You are free: to copy, distribute, display, and perform the work

Under the following conditions:

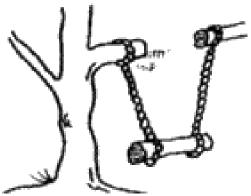
Attribution. You must attribute the work in the manner specified by the author or licensor.

Noncommercial. You may not use this work for commercial purposes.

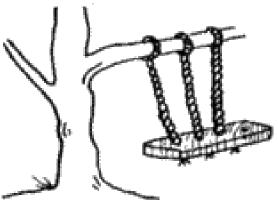

No Derivative Works. You may not alter, transform, or build upon this work.

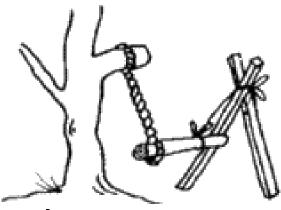

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

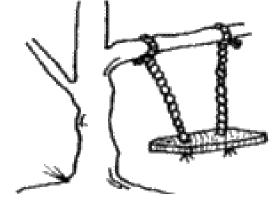
Your fair use and other rights are in no way affected by the above.

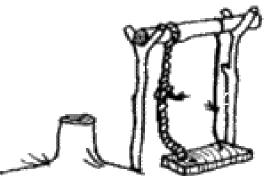

This is a human-readable summary of the Legal Code (the full license) found at the end of this document

Software development




What the user asked for


How the analyst saw it


How the system was designed

As the programmer wrote it

What the user really wanted

How it actually works

Requirements engineering

- The process of establishing the services that the customer requires from a system and the constraints under which it operates and is developed.
- The requirements themselves are the descriptions of the system services and constraints that are generated during the requirements engineering process.

What is a requirement?

- It may range from a high-level abstract statement of a service or of a system constraint to a detailed mathematical functional specification.
- This is inevitable as requirements may serve a dual function
 - May be the basis for a bid for a contract therefore must be open to interpretation;
 - May be the basis for the contract itself therefore must be defined in detail;
- Both these statements may be called requirements.

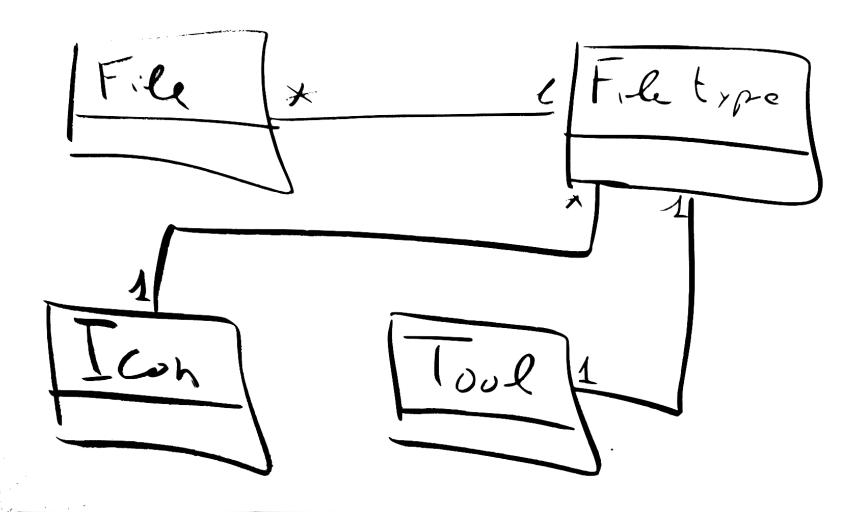
Activities in req. engineering

- Elicitation
- Analysis
- Formalization
- V&V (verification and validation)

Types of requirement

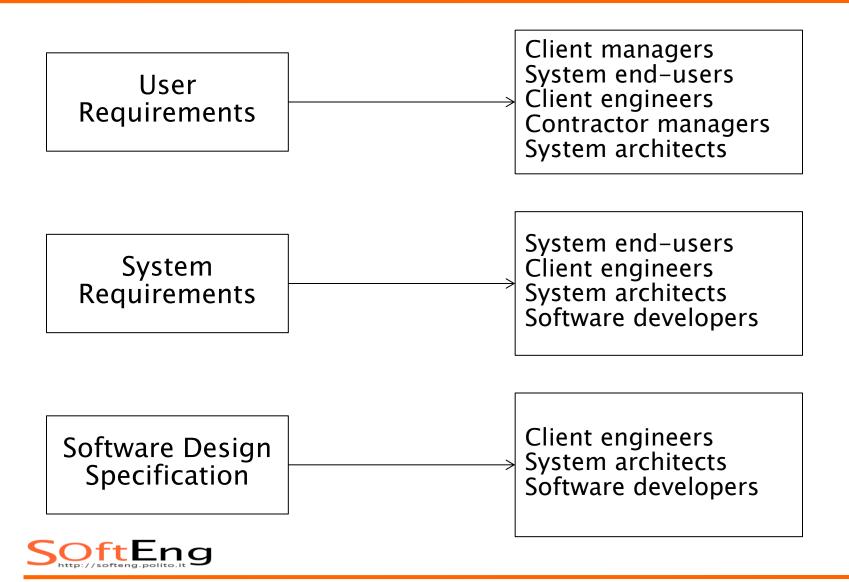
- User requirements
 - Statements in natural language plus diagrams of the services the system provides and its operational constraints. Written for customers.
- System requirements (a.k.a. developer requirements)
 - A structured document setting out detailed descriptions of the system's functions, services and operational constraints. Defines what should be implemented so may be part of a contract between client and contractor.

Definitions and specifications


User requirement definition

The software must provide a means of representing and accessing external files edited by other tools

System requirements specification


- 1.1 The user should be provided with facilities to define the type of external files
- 1.2 Each external file type may have an associated tool which may be applied to the file
- 1.3 Each external file type may be represented as a specific icon on the user's display
- 1.4 Facilities should be provided for the icon representing an external file type to be defined by the user
- 1.5 When a user selects an icon representing an external file the effect of that selection is to apply the tool associated with the external file type to the file represented by the selected icon

Specification diagrams

Requirements readers

Functional non-functional req.

- Functional requirements
 - Statements of services the system should provide, how the system should react to particular inputs and how the system should behave in particular situations.
- Non-functional requirements
 - Aka Quality requirements
 - constraints on the services or functions offered by the system such as timing constraints, constraints on the development process, standards, etc.
- Domain requirements
 - Requirements that come from the application domain of the system and that reflect characteristics of that domain.

Example: The LIBSYS system

- A library system that provides a single interface to a number of databases of articles in different libraries.
- Users can search for, download and print these articles for personal study.

Examples functional req.

- FR1: The user shall be able to search either all of the initial set of databases or select a subset from it.
- FR2: The system shall provide appropriate viewers for the user to read documents in the document store.
- FR3: Every order shall be allocated a unique identifier (ORDER_ID) which the user shall be able to copy to the account's permanent storage area.

Requirements imprecision

- Problems arise when requirements are not precisely stated.
- Ambiguous requirements may be interpreted in different ways by developers and users.
- Consider the term 'appropriate viewers'
 - User intention special purpose viewer for each different document type;
 - Developer interpretation Provide a text viewer that shows the contents of the

SoftEndocument.

- Correct
- Unambiguous
- Complete
- Consistent
- Ranked for importance and/or stability
- Verifiable
- Modifiable
- Traceable

Correct

- Every requirement stated is one that the software shall meet
- Customer or users can determine if the requirement correctly reflects their actual needs
 - Traceability makes this easier

- Unambiguous
 - Every requirement has only one interpretation
 - Each characteristic of the final product must be described using a single unique term
 - Both to those who create it and to those who use it.

- Complete
 - Include all significant requirements
 - Address external requirements imposed by system specification
 - Define response to all realizable inputs
 - Both correct or incorrect
 - Define all terms and unit of measure

- Internally Consistent
 - No subset of requirements is in conflict
 - Characteristics of real-world objects (e.g. GUI
 - Logical or temporal
 - Different terms for the same object

Completeness and consistency

- In principle, requirements should be both complete and consistent.
 - Complete
 - They should include descriptions of all facilities required.
 - Consistent
 - There should be no conflicts or contradictions in the descriptions of the system facilities.
 - In practice, it is impossible to produce a document that is both complete and consistent

- Ranked
 - Stability in the future
 - Necessity
 - Essential
 - Conditional
 - Optional

Verifiable

- there exists some finite cost-effective process with which a person or machine can check that the software product meets the requirement.
 - Ambiguous requirements are not verifiable

Modifiable

- structure and style such that any changes can be made easily, completely, and consistently while retaining the structure and style
 - Well structured
 - Non redundant
 - Separate requirements

- Traceable
 - Backward
 - explicitly referencing source in earlier documents
 - Forward
 - unique name or reference number

Defects in requirements

- Omission/ incompleteness
- Inconsistency/contradiction
- Ambiguity
- Incorrect Fact
- Extraneous Information
 - Overspecification (design)
- Unstructured (wrong session)
- Redundancy

Non-functional requirements

- These define system properties and constraints e.g. reliability, response time and storage requirements. Constraints are I/O device capability, system representations, etc.
- Process requirements may also be specified mandating a particular CASE system, programming language or development method.
- Non-functional requirements may be more critical than functional requirements. If these are not met, the system is useless.

Non-functional classifications

Product requirements

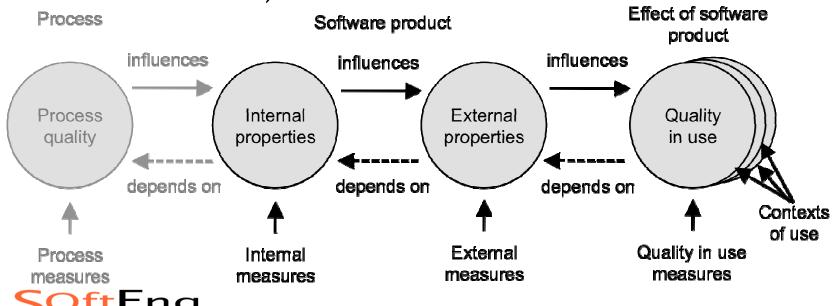
 Requirements which specify that the delivered product must behave in a particular way e.g. execution speed, reliability, etc.

Organisational requirements

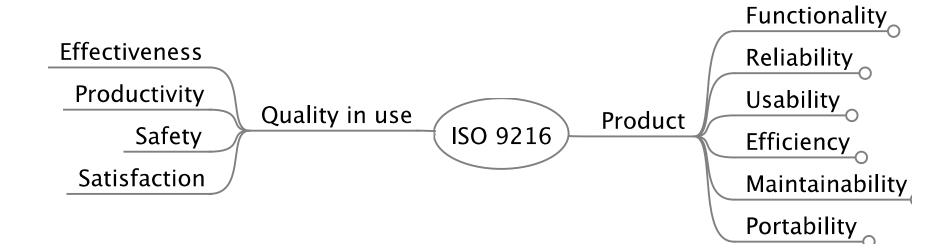
 Requirements which are a consequence of organisational policies and procedures e.g. process standards used, implementation requirements, etc.

External requirements

 Requirements which arise from factors which are external to the system and its development process e.g. interoperability requirements, legislative requirements, etc.



Non-functional requirements



ISO 9126

- Software product quality
 - ◆ Issued 1991, revised 2001
 - Being replace by ISO/IEC 250xx
 - SQuaRE (Software product Quality Requirements and Evaluation)

ISO 9126

ISO 9126 - External measure

Breakdown avoidance

Purpose	How often can user avoid breakdown of system, even if critical failures occurred?
Method of application	Count the number of breakdowns occurrence with respect to number of failures. If it is under operation, analyze log of user operation history.
Definition	Breakdown avoidance ratio X= 1- (A / B) A= Number of breakdowns B= Number of failures NOTE: 1. The breakdown means executing of any user task is suspended until system is restarted up, or its control is lost until system is enforced to be shut down. 2. When none or a few failures observed, time between breakdown may be more suitable.
Interpretation	$0 \le X \le 1$ The closer to 1.0 is the better.

ISO 9126 - Internal measure

Test coverage

Purpose	How much of the required test cases are covered by the test plan?
Method of application	Count the number of test cases planned and compare it to the number of test cases required to obtain adequate test coverage.
Definition	X=A/B A=Number of test cases designed in test plan and confirmed in review B= Number of test cases required
Interpretation	0 <= X Where X is the greater the better adequacy

ISO 9126

- Functionality
- Reliability
- Usability
- Efficiency
- Maintainability
- Portability

Non-functional req.: examples

Product requirement

- 8.1 The user interface for LIBSYS shall be implemented as simple HTML without frames or Java applets.

Organisational requirement

 9.3.2 The system development process and deliverable documents shall conform to the process and deliverables defined in XYZCo-SP-STAN-95.

External requirement

 7.6.5 The system shall not disclose any personal information about customers apart from their name and reference number to the operators of the system.

Goals and requirements

- Non-functional requirements may be very difficult to state precisely and imprecise requirements may be difficult to verify.
- Goal
 - A general intention of the user such as ease of use.
- Verifiable non-functional requirement
 - A statement using some measure that can be objectively tested.
- Goals are helpful to developers as they convey the intentions of the system users.

Examples

A system goal

 The system should be easy to use by experienced controllers and should be organised in such a way that user errors are minimised.

A verifiable non-functional requirement

 Experienced controllers shall be able to use all the system functions after a total of two hours training. After this training, the average number of errors made by experienced users shall not exceed two per day.

Requirements measures

Property Measure

Speed Processed transactions/second

User/Event response time

Screen refresh time

Size M Bytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems

Requirements interaction

- Conflicts between different nonfunctional requirements are common in complex systems.
- Spacecraft system
 - To minimise weight, the number of separate chips in the system should be minimised.
 - To minimise power consumption, lower power chips should be used.
 - However, using low power chips may mean that more chips have to be used. Which is the most critical requirement?

Development requirements

- Who are the project participants?
- What values will be reflected in the project (simple, soon, fast, or flexible)?
- What feedback or project visibility do the users and sponsors wish?
- What can we buy, what must we build, what is our competition to this system?
- What other process requirements are there (testing, installation, etc.)?
- What dependencies does the project operate under?

Domain requirements

- Derived from the application domain and describe system characteristics and features that reflect the domain.
- Domain requirements be new functional requirements, constraints on existing requirements or define specific computations.
- If domain requirements are not satisfied, the system may be unworkable.

LIBSYS domain requirements

- There shall be a standard user interface to all databases which shall be based on the Z39.50 standard.
- Because of copyright restrictions, some documents must be deleted immediately on arrival. Depending on the user's requirements, these documents will either be printed locally on the system server for manually forwarding to the user or routed to a network printer.

Train protection system

- The deceleration of the train shall be computed as:
 - $D_{train} = D_{control} + D_{gradient}$

where

D_{gradient} is 9.81ms² * compensated gradient/alpha

and where the values of 9.81ms² /alpha are known for different types of train.

Domain req. problems

- Understandability
 - Requirements are expressed in the language of the application domain;
 - This is often not understood by software engineers developing the system.
- Implicitness
 - Domain specialists understand the area so well that they do not think of making the domain requirements explicit.

User requirements

- Should describe functional and nonfunctional requirements in such a way that they are understandable by system users who don't have detailed technical knowledge.
- User requirements are defined using natural language, tables and diagrams as these can be understood by all users.

Problems, natural language

- Lack of clarity
 - Precision is difficult without making the document difficult to read.
- Requirements confusion
 - Functional and non-functional requirements tend to be mixed-up.
- Requirements amalgamation
 - Several different requirements may be expressed together.

Problems, NL

Ambiguity

 The readers and writers of the requirement must interpret the same words in the same way. NL is naturally ambiguous so this is very difficult.

Over–flexibility

- The same thing may be said in a number of different ways in the specification.

Lack of modularisation

NL structures are inadequate to structure system requirements.

LIBSYS requirement

4..5 LIBSYS shall provide a financial accounting system that maintains records of all payments made by users of the system. System managers may configure this system so that regular users may receive discounted rates.

Editor grid requirement

2.6 Grid facilities To assist in the positioning of entities on a diagram, the user may turn on a grid in either centimetres or inches, via an option on the control panel. Initially, the grid is off. The grid may be turned on and off at any time during an editing session and can be toggled between inches and centimetres at any time. A grid option will be provided on the reduce-to-fit view but the number of grid lines shown will be reduced to avoid filling the smaller diagram with grid lines.

Requirement problems

- Database requirements includes both conceptual and detailed information
 - Describes the concept of a financial accounting system that is to be included in LIBSYS;
 - However, it also includes the detail that managers can configure this system – this is unnecessary at this level.
- Grid requirement mixes three different kinds of requirement
 - Conceptual functional requirement (the need for a grid);
 - Non-functional requirement (grid units);
 - Non-functional UI requirement (grid switching).

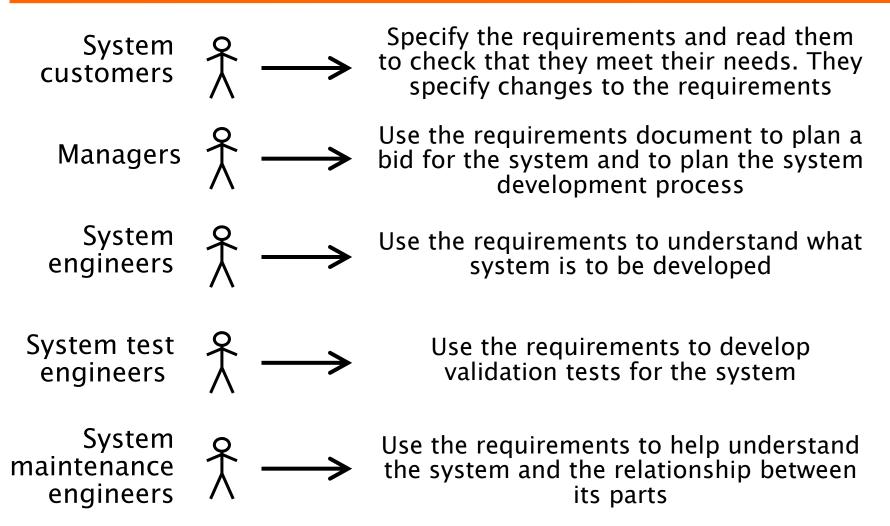
Structured presentation

2.6.1 Grid facilities

The editor shall provide a grid facility where a matrix of horizontal and vertical lines provide a background to the editor window. This grid shall be a passive grid where the alignment of entities is the user's responsibility.

Rationale: A grid helps the user to create a tidy diagram with well-spaced entities. Although an active grid, where entities 'snap-to' grid lines can be useful, the positioning is imprecise. The user is the best person to decide where entities should be positioned.

Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6


Source: Ray Wilson, Glasgow Office

The requirements document

- The requirements document is the official statement of what is required of the system developers.
- Should include both a definition of user requirements and a specification of the system/developer requirements.
- It is NOT a design document. As far as possible, it should set of WHAT the system should do rather than HOW it should do it

Users of requirements

IEEE requirements standard

- IEEE Std 830 1998
- Defines a generic structure for a requirements document that must be instantiated for each specific system.
 - Introduction.
 - Overall description.
 - Specific requirements.
 - Appendixes.
 - Index.

Req document structure

- Preface
- Introduction
- Glossary
- User requirements definition
- System architecture
- System requirements specification
- System models
- System evolution
- Appendices
- Index

Organizing requirements

- Mode
- User class
- Object
- Feature
- Stimulus
- Functional hierarchy

- 1. Purpose and scope
- 2. The terms used / Glossary
- 3. The use cases
- 4. The technology to be used
- 5. Other various requirements
- 6. Human backup, legal, political, organizational issues

1. Purpose and scope

- - What is the overall scope and goal?
 - Stakeholders (who cares?)
 - What is in scope, what is out of scope

organizational issues

- 1. Purpose and scope
- 2. The terms used / Glossary
- 3. The use cases
- 4. The technology to be used
- 5. Other various requirements
- 6. Human backup, legal, political, organizational issues

- 1. Purpose and scope
- 2. The terms used / Glossary
- 3. The use cases
- The primary actors and their general goals
- The business use cases (operations concepts)
- The system use cases

- 1. Purpose and scope
- 2. The terms used / Glossary
- 3. The use cases
- 4. The technology to be used

- What technology requirements are there for this system?
- What systems will this system interface with, with what requirements?

- Development process
- Business rules
- Performance
- Operations, security, documentation
- Use and usability
- Maintenance and portability
- Unresolved or deferred
- 5. Other various requirements
- 6. Human backup, legal, political, organizational issues

- What is the human backup to system operation?
- What legal, what political requirements are there?
- What are the human consequences of completing this system?
- What are the training requirements?
- What assumptions, dependencies are there on the human environment?
- 6. Human backup, legal, political, organizational issues

Guidelines for requirements

- Define a standard format and use it for all requirements.
- Use language in a consistent way. Use shall for mandatory requirements, should for desirable requirements.
- Use text highlighting to identify key parts of the requirement.
- Avoid the use of computer jargon.

System/developer requirements

- More detailed specifications of system functions, services and constraints than user requirements.
- They are intended to be a basis for designing the system.
- They may be incorporated into the system contract.
- System requirements may be defined or illustrated using system models (UML)

Requirements and design

- In principle, requirements should state what the system should do and the design should describe how it does this.
- In practice, requirements and design are inseparable
 - A system architecture may be designed to structure the requirements;
 - The system may inter-operate with other systems that generate design requirements;
 - The use of a specific design may be a domain requirement.

Alternatives to NL specification

Notation	Description
Structured natural language	This approach depends on defining standard forms or templates to express the requirements specification.
Design description languages	This approach uses a language like a programming language but with more abstract features to specify the requirements by defining an operational model of the system. This approach is not now widely used although it can be useful for interface specifications.
Graphical notations	A graphical language, supplemented by text annotations is used to define the functional requirements for the system. An early example of such a graphical language was SADT. Now, use-case descriptions and sequence diagrams are commonly used.
Mathematical specifications	These are notations based on mathematical concepts such as finite-state machines or sets. These unambiguous specifications reduce the arguments between customer and contractor about system functionality. However, most customers don't understand formal specifications and are reluctant to accept it as a system contract.

Structured language

- The freedom of the requirements writer is limited by a predefined template for requirements.
- All requirements are written in a standard way.
- The terminology used in the description may be limited.
- The advantage is that the most of the expressiveness of natural language is maintained but a degree of uniformity is imposed on the specification.

Form-based specifications

- Definition of the function or entity.
- Description of inputs and where they come from.
- Description of outputs and where they go to.
- Indication of other entities required.
- Pre and post conditions (if appropriate).
- The side effects (if any) of the function.

Form-based

Insulin Pump/Control Software/SRS/3.3.2

Function Compute insulin dose: Safe sugar level

Description Computes the dose of insulin to be delivered when the current measured sugar level is in the safe zone between 3 and 7 units.

Inputs Current sugar reading (r2), the previous two readings (r0 and r1)

Source Current sugar reading from sensor. Other readings from memory.

Outputs CompDose – the dose in insulin to be delivered

Destination Main control loop

Action: CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate of increase is decreasing. If the level is increasing and the rate of increase is increasing, then CompDose is computed by dividing the difference between the current sugar level and the previous level by 4 and rounding the result. If the result, is rounded to zero then CompDose is set to the minimum dose that can be delivered.

Requires Two previous readings so that the rate of change of sugar level can be computed.

Pre-condition The insulin reservoir contains at least the maximum allowed single dose of insulin..

Post-condition r0 is replaced by r1 then r1 is replaced by r2

Side-effects None

Tabular specification

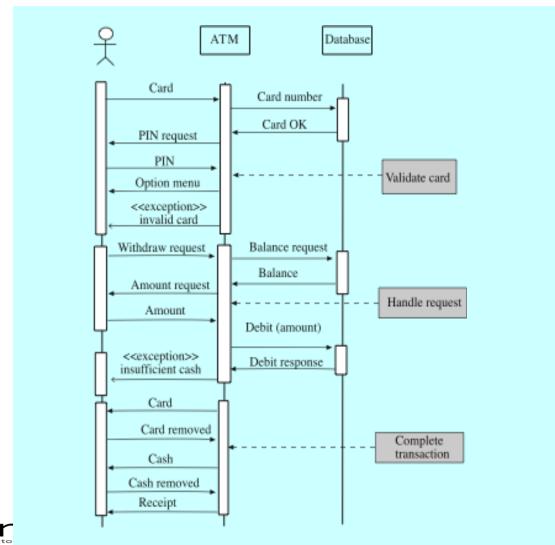
- Used to supplement natural language.
- Particularly useful when you have to define a number of possible alternative courses of action.

Tabular specification

Condition	Action
Sugar level falling (r2 < r1)	CompDose = 0
Sugar level stable $(r2 = r1)$	CompDose = 0
Sugar level increasing and rate of increase decreasing ((r2-r1)<(r1-r0))	CompDose = 0
Sugar level increasing and rate of increase stable or increasing. $((r2-r1) \ge (r1-r0))$	CompDose = round ((r2-r1)/4) If rounded result = 0 then CompDose = MinimumDose

Graphical models

- Graphical models are most useful when you need to show how state changes or where you need to describe a sequence of actions.
- See UML, sequence diagrams.



Sequence diagrams

- These show the sequence of events that take place during some user interaction with a system.
- You read them from top to bottom to see the order of the actions that take place.
- Cash withdrawal from an ATM
 - Validate card;
 - Handle request;
 - Complete transaction.

Example seq of ATM withdrawal

Interface specification

- Most systems must operate with other systems and the operating interfaces must be specified as part of the requirements.
- Three types of interface may have to be defined
 - Procedural interfaces;
 - Data structures that are exchanged;
 - Data representations.
- Formal notations are an effective technique for interface specification.

PDL interface description

```
interface PrintServer {
// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue,
               cancelPrintJob, switchPrinter
  void initialize ( Printer p ) ;
  void print ( Printer p, PrintDoc d ) ;
  void displayPrintQueue ( Printer p ) ;
  void cancelPrintJob (Printer p, PrintDoc d) ;
  void switchPrinter (Printer p1, Printer p2,
                           PrintDoc d) ;
} //PrintServer
```


User interfaces

- Mostly non-functional
 - Elements of functional reqs (input)
- Prototypes are essential
 - Provide clear information to developers
 - Get feedback from users
 - Get commitment

V&V of requirements

- Natural language, UML
 - Inspection, reading
 - By user, by developer
- UML
 - Some syntactic check by tools
- Formal language
 - Model checking

Tools

- RequisitePro, Doors, Serena RM
- Word, Excel
- UML tools
 - Powerpoint, Visio, specialized tools (StarUML)

References

 IEEE Recommended Practice for Software Requirements Specifications (IEEE Std 830-1998, Revision of IEEE Std 830-1993)

Key points

- Requirements set out what the system should do and define constraints on its operation and implementation.
- Functional requirements set out services the system should provide.
- Non-functional requirements constrain the system being developed or the development process.
- User requirements are high-level statements of what the system should do. User requirements should be written using natural language, tables and diagrams.

Key points

- System requirements are intended to communicate the functions that the system should provide.
- A software requirements document is an agreed statement of the system requirements.
- The IEEE standard is a useful starting point for defining more detailed specific requirements standards.

License (1)

- THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL"
 OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK
 OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.
- BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
- 1. Definitions
 - **"Collective Work"** means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as defined below) for the purposes of this License.
 - "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed, or adapted, except that a work that constitutes a Collective Work will not be considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the Work is a musical composition or sound recording, the synchronization of the Work in timed-relation with a moving image ("synching") will be considered a Derivative Work for the purpose of this License.
 - "Licensor" means the individual or entity that offers the Work under the terms of this License.
 - "Original Author" means the individual or entity who created the Work.
 - "Work" means the copyrightable work of authorship offered under the terms of this License.
 - **"You"** means an individual or entity exercising rights under this License who has not previously violated the terms of this License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a previous violation.
- 2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.
- 3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:
 - a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as incorporated in the Collective Works;
 - b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio transmission the Work including as incorporated in Collective Works;

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to make such modifications as are technically necessary to exercise the rights in other media and formats, but otherwise you have no rights to make Derivative Works. All rights not expressly granted by Licensor are hereby reserved, including but not limited to the rights set forth in Sections 4(d) and 4(e).

License (2)

- 4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:
 - a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of the Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms on the Work that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder. You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties. You may not distribute, publicly display, publicly perform, or publicly digitally perform the Work with any technological measures that control access or use of the Work in a manner inconsistent with the terms of this License Agreement. The above applies to the Work as incorporated in a Collective Work, but this does not require the Collective Work apart from the Work itself to be made subject to the terms of this License. If You create a Collective Work, upon notice from any Licensor You must, to the extent practicable, remove from the Collective Work any credit as required by clause 4(c), as requested.
 - b. You may not exercise any of the rights granted to You in Section 3 above in any manner that is primarily intended for or directed toward commercial advantage or private monetary compensation. The exchange of the Work for other copyrighted works by means of digital file-sharing or otherwise shall not be considered to be intended for or directed toward commercial advantage or private monetary compensation, provided there is no payment of any monetary compensation in connection with the exchange of copyrighted works.
 - c. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work, You must keep intact all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another party or parties (e.g. a sponsor institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service or by other reasonable means, the name of such party or parties; the title of the Work if supplied; and to the extent reasonably practicable, the Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice or licensing information for the Work. Such credit may be implemented in any reasonable manner; provided, however, that in the case of a Collective Work, at a minimum such credit will appear where any other comparable authorship credit appears and in a manner at least as prominent as such other comparable authorship credit.
 - d. For the avoidance of doubt, where the Work is a musical composition:
 - i. Performance Royalties Under Blanket Licenses. Licensor reserves the exclusive right to collect, whether individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital performance (e.g. webcast) of the Work if that performance is primarily intended for or directed toward commercial advantage or private monetary compensation.
 - ii. Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive right to collect, whether individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from the Work ("cover version") and distribute, subject to the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other jurisdictions), if Your distribution of such cover version is primarily intended for or directed toward commercial advantage or private monetary compensation.
 - Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor reserves the exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the public digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright Act (or the equivalent in other jurisdictions), if Your public digital performance is primarily intended for or directed toward commercial advantage or private monetary compensation.

License (3)

- 5. Representations, Warranties and Disclaimer
- UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.
- 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

- a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License. Individuals or entities who have received Collective Works from You under this License, however, will not have their licenses terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.
- b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

- a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers to the recipient a license to the Work on the same terms and conditions as the license granted to You under this License.
- b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable.
- c. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in writing and signed by the party to be charged with such waiver or consent.
- d. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions that may appear in any communication from You. This License may not be modified without the mutual written agreement of the Licensor and You.