
Requirements
Engineering

Version 1.8 – 11 November 2012

© Maurizio Morisio, Marco Torchiano, 2012

2

Licensing Note

Attribution-NonCommercial-NoDerivs 2.5

 You are free: to copy, distribute, display, and perform the work

Under the following conditions:

 Attribution. You must attribute the work in the manner specified by
the author or licensor.

 Noncommercial. You may not use this work for commercial purposes.
–

 No Derivative Works. You may not alter, transform, or build upon this
work.

 For any reuse or distribution, you must make clear to others the
license terms of this work.

 Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license)
found at the end of this document

Software development

Requirements
Analysis

System
Design

Detailed
Design

Coding

Unit testing

Integration
testing

System
testing

Customer
Needs

Acceptance
testing

Requirements engineering

 The process of establishing the
services that the customer requires
from a system and the constraints
under which it operates and is
developed.

 The requirements themselves are the
descriptions of the system services
and constraints that are generated
during the requirements engineering
process.

What is a requirement?

 It may range from a high-level abstract
statement of a service or of a system
constraint to a detailed mathematical
functional specification.

 This is inevitable as requirements may serve
a dual function

 May be the basis for a bid for a contract -
therefore must be open to interpretation;

 May be the basis for the contract itself -
therefore must be defined in detail;

 Both these statements may be called
requirements.

Activities in req. engineering

 Elicitation

 Analysis

 Formalization

 V&V (verification and validation)

Types of requirement

 User requirements
– Statements in natural language plus diagrams

of the services the system provides and its
operational constraints. Written for customers.

 System requirements (a.k.a. developer
requirements)

– A structured document setting out detailed

descriptions of the system’s functions,
services and operational constraints. Defines
what should be implemented so may be part
of a contract between client and contractor.

Definitions and specifications

The software must provide a means of representing
and accessing external files edited by other tools

1.1 The user should be provided with facilities to define the
type of external files

1.2 Each external file type may have an associated tool
which may be applied to the file

1.3 Each external file type may be represented as a specific
icon on the user’s display

1.4 Facilities should be provided for the icon representing an
external file type to be defined by the user

1.5 When a user selects an icon representing an external
file the effect of that selection is to apply the tool
associated with the external file type to the file
represented by the selected icon

User requirement definition

System requirements specification

Specification diagrams

Requirements readers

System
Requirements

Software Design
Specification

User
Requirements

Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

Client engineers
System architects
Software developers

Functional non-functional req.

 Functional requirements

 Statements of services the system should provide,
how the system should react to particular inputs and
how the system should behave in particular
situations.

 Non-functional requirements

 Aka Quality requirements

 constraints on the services or functions offered by
the system such as timing constraints, constraints on
the development process, standards, etc.

 Domain requirements
– Requirements that come from the application domain of

the system and that reflect characteristics of that domain.

Example: The LIBSYS system

 A library system that provides a
single interface to a number of
databases of articles in different
libraries.

 Users can search for, download and
print these articles for personal study.

Examples functional req.

FR1: The user shall be able to search either
all of the initial set of databases or
select a subset from it.

FR2: The system shall provide appropriate
viewers for the user to read
documents in the document store.

FR3: Every order shall be allocated a
unique identifier (ORDER_ID) which
the user shall be able to copy to the
account’s permanent storage area.

Requirements imprecision

 Problems arise when requirements are
not precisely stated.

 Ambiguous requirements may be
interpreted in different ways by
developers and users.

 Consider the term ‘appropriate
viewers’
– User intention - special purpose viewer for

each different document type;

– Developer interpretation - Provide a text
viewer that shows the contents of the
document.

Good Requirements

 Correct

 Unambiguous

 Complete

 Consistent

 Ranked for importance and/or stability

 Verifiable

 Modifiable

 Traceable

Good Requirements

 Correct

 Every requirement stated is one that the

software shall meet

 Customer or users can determine if the

requirement correctly reflects their actual

needs

– Traceability makes this easier

Good Requirements

 Unambiguous

 Every requirement has only one

interpretation

 Each characteristic of the final product

must be described using a single unique

term

 Both to those who create it and to those

who use it.

Good Requirements

 Complete

 Include all significant requirements

– Address external requirements imposed by
system specification

 Define response to all realizable inputs

– Both correct or incorrect

 Define all terms and unit of measure

Good Requirements

 Internally Consistent

 No subset of requirements is in conflict

– Characteristics of real-world objects (e.g. GUI

– Logical or temporal

– Different terms for the same object

Completeness and consistency

 In principle, requirements should be
both complete and consistent.

 Complete
– They should include descriptions of all

facilities required.

 Consistent
– There should be no conflicts or contradictions

in the descriptions of the system facilities.

 In practice, it is impossible to produce a
document that is both complete and
consistent

Good Requirements

 Ranked

 Stability in the future

 Necessity

– Essential

– Conditional

– Optional

Good Requirements

 Verifiable

 there exists some finite cost-effective

process with which a person or machine

can check that the software product

meets the requirement.

– Ambiguous requirements are not verifiable

Good Requirements

 Modifiable

 structure and style such that any changes

can be made easily, completely, and

consistently while retaining the structure

and style

– Well structured

– Non redundant

– Separate requirements

Good Requirements

 Traceable

 Backward

– explicitly referencing source in earlier
documents

 Forward

– unique name or reference number

Defects in requirements

 Omission/ incompleteness

 Inconsistency/contradiction

 Ambiguity

 Incorrect Fact

 Extraneous Information

 Overspecification (design)

 Unstructured (wrong session)

 Redundancy

Non-functional requirements

 These define system properties and
constraints e.g. reliability, response time and
storage requirements. Constraints are I/O
device capability, system representations, etc.

 Process requirements may also be specified
mandating a particular CASE system,
programming language or development
method.

 Non-functional requirements may be more
critical than functional requirements. If these
are not met, the system is useless.

Non-functional classifications

 Product requirements
– Requirements which specify that the delivered

product must behave in a particular way e.g.
execution speed, reliability, etc.

 Organisational requirements
– Requirements which are a consequence of

organisational policies and procedures e.g. process
standards used, implementation requirements, etc.

 External requirements
– Requirements which arise from factors which are

external to the system and its development process
e.g. interoperability requirements, legislative
requirements, etc.

Non-functional requirements

ISO 9126

 Software product quality

 Issued 1991, revised 2001

 Being replace by ISO/IEC 250xx

– SQuaRE (Software product Quality Requirements and
Evaluation)

ISO/IEC FDIS 25010:2010(E)

© ISO/IEC 2010 – All rights reserved 27

C.3 Approaches to quality

Figure C.2 — Quality in the lifecycle

User needs for quality include requirements for system quality in use in specific contexts of use. These
identified needs can be used when specifying external and internal measures of quality using software product
quality characteristics and subcharacteristics.

Software product quality can be evaluated by measuring internal properties (typically static measures of
intermediate products), or by measuring external properties (typically by measuring the behaviour of the code
when executed), or by measuring quality in use properties (when the product is in real or simulated use)
(Figure C.2).

Improving process quality (the quality of any of the lifecycle processes defined in ISO/IEC 12207 and
ISO/IEC 15288) contributes to improving product quality, and product quality contributes to improving system
quality in use. Therefore, assessing and improving a process is a means to improve product quality, and
evaluating and improving product quality is one means of improving the system quality in use. Similarly,
evaluating system quality in use can provide feedback to improve a product, and evaluating a product can
provide feedback to improve a process.

Appropriate internal properties of the software are a pre-requisite for achieving the required external behaviour,
and appropriate external behaviour is a pre-requisite for achieving quality in use (Figure C.2).

C.4 Quality influences

Figure C.3 illustrates the relationships among target entities of the quality model. The software lifecycle
processes (such as the quality requirements process, design process and testing process) influence the
quality of the software product and the system. The quality of resources, such as human resources, software
tools and techniques used for the process, influence the process quality, and consequently, influence the
product quality.

Software product quality, as well as the quality of other components of a system, influences the quality of the
system. The system quality has various influences (effects) depending on the contexts of use. The context of
use can be defined by a set of a user, a task, and the environment. Some examples of context of use are
shown in Table 1 (see 3.6).

ISO 9126

ISO 9126 – External measure

 Breakdown avoidance

Purpose How often can user avoid breakdown of system, even if
critical failures occurred?

Method of
application

Count the number of breakdowns occurrence with respect
to number of failures.
If it is under operation, analyze log of user operation
history.

Definition Breakdown avoidance ratio
X= 1- (A / B)
A= Number of breakdowns
B= Number of failures
NOTE: 1.The breakdown means executing of any user task is suspended
until system is restarted up, or its control is lost until system is enforced to
be shut down.
2. When none or a few failures observed, time between breakdown may be
more suitable.

Interpretation 0<= X <= 1 The closer to 1.0 is the better.

ISO 9126 – Internal measure

 Test coverage

Purpose How much of the required test cases are covered by the
test plan?

Method of
application

Count the number of test cases planned and compare it to
the number of test cases required to obtain adequate test
coverage.

Definition X=A/B
A=Number of test cases designed in test plan
and confirmed in review
B= Number of test cases required

Interpretation 0<= X Where X is the greater the better adequacy

ISO 9126

 Functionality

 Reliability

 Usability

 Efficiency

 Maintainability

 Portability

Non-functional req.: examples

 Product requirement

– 8.1 The user interface for LIBSYS shall be implemented
as simple HTML without frames or Java applets.

 Organisational requirement

– 9.3.2 The system development process and deliverable
documents shall conform to the process and

deliverables defined in XYZCo-SP-STAN-95.

 External requirement

– 7.6.5 The system shall not disclose any personal
information about customers apart from their name
and reference number to the operators of the system.

Goals and requirements

 Non-functional requirements may be very
difficult to state precisely and imprecise
requirements may be difficult to verify.

 Goal

 A general intention of the user such as ease of use.

 Verifiable non-functional requirement

 A statement using some measure that can be objectively
tested.

 Goals are helpful to developers as they
convey the intentions of the system users.

Examples

 A system goal

 The system should be easy to use by
experienced controllers and should be
organised in such a way that user errors are
minimised.

 A verifiable non-functional requirement

 Experienced controllers shall be able to use all
the system functions after a total of two hours
training. After this training, the average
number of errors made by experienced users
shall not exceed two per day.

Requirements measures
Property Measure

Speed Processed transactions/second

User/Event response time

Screen refresh time

Size M Bytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems

Requirements interaction

 Conflicts between different non-
functional requirements are common
in complex systems.

 Spacecraft system
– To minimise weight, the number of separate

chips in the system should be minimised.

– To minimise power consumption, lower
power chips should be used.

– However, using low power chips may mean
that more chips have to be used. Which is
the most critical requirement?

Development requirements

 Who are the project participants?

 What values will be reflected in the project
(simple, soon, fast, or flexible)?

 What feedback or project visibility do the
users and sponsors wish?

 What can we buy, what must we build, what is
our competition to this system?

 What other process requirements are there
(testing, installation, etc.)?

 What dependencies does the project operate
under?

Domain requirements

 Derived from the application domain and
describe system characteristics and
features that reflect the domain.

 Domain requirements be new functional
requirements, constraints on existing
requirements or define specific
computations.

 If domain requirements are not satisfied,
the system may be unworkable.

LIBSYS domain requirements

 There shall be a standard user interface to
all databases which shall be based on the
Z39.50 standard.

 Because of copyright restrictions, some
documents must be deleted immediately on

arrival. Depending on the user’s
requirements, these documents will either
be printed locally on the system server for
manually forwarding to the user or routed
to a network printer.

Train protection system

 The deceleration of the train shall
be computed as:

 Dtrain = Dcontrol + Dgradient

 where

Dgradient is 9.81ms2 * compensated
gradient/alpha

and where the values of 9.81ms2 /alpha
are known for different types of
train.

Domain req. problems

 Understandability

 Requirements are expressed in the
language of the application domain;

 This is often not understood by
software engineers developing the
system.

 Implicitness

 Domain specialists understand the area
so well that they do not think of making
the domain requirements explicit.

User requirements

 Should describe functional and non-
functional requirements in such a way
that they are understandable by

system users who don’t have detailed
technical knowledge.

 User requirements are defined using
natural language, tables and
diagrams as these can be understood
by all users.

Problems, natural language

 Lack of clarity

 Precision is difficult without making the
document difficult to read.

 Requirements confusion

 Functional and non-functional
requirements tend to be mixed-up.

 Requirements amalgamation

 Several different requirements may be
expressed together.

Problems, NL

 Ambiguity
– The readers and writers of the requirement

must interpret the same words in the same
way. NL is naturally ambiguous so this is
very difficult.

 Over-flexibility
– The same thing may be said in a number of

different ways in the specification.

 Lack of modularisation
– NL structures are inadequate to structure

system requirements.

LIBSYS requirement

4..5 LIBSYS shall provide a financial accounting

system that maintains records of all payments made

by users of the system. System managers may

configure this system so that regular users may

receive discounted rates.

Editor grid requirement

2.6 Grid facilities To assist in the positioning of entities on a diagram,

the user may turn on a grid in either centimetres or inches, via an

option on the control panel. Initially, the grid is off. The grid may be

 turned on and off at any time during an editing session and can be

toggled between inches and centimetres at any time. A grid option

will be provided on the reduce-to-fit view but the number of grid

 lines shown will be reduced to avoid filling the smaller diagram

with grid lines.

Requirement problems

 Database requirements includes both conceptual
and detailed information

 Describes the concept of a financial accounting system
that is to be included in LIBSYS;

 However, it also includes the detail that managers can
configure this system - this is unnecessary at this level.

 Grid requirement mixes three different kinds of
requirement

 Conceptual functional requirement (the need for a grid);

 Non-functional requirement (grid units);

 Non-functional UI requirement (grid switching).

Structured presentation

The requirements document

 The requirements document is the
official statement of what is required of
the system developers.

 Should include both a definition of user
requirements and a specification of the
system/developer requirements.

 It is NOT a design document. As far as
possible, it should set of WHAT the
system should do rather than HOW it
should do it

Users of requirements

System
customers

Managers

System
engineers

System test
engineers

System
maintenance

engineers

Specify the requirements and read them
to check that they meet their needs. They

specify changes to the requirements

Use the requirements document to plan a
bid for the system and to plan the system

development process

Use the requirements to understand what
system is to be developed

Use the requirements to develop
validation tests for the system

Use the requirements to help understand
the system and the relationship between

its parts

IEEE requirements standard

 IEEE Std 830 1998

 Defines a generic structure for a
requirements document that must be
instantiated for each specific system.

 Introduction.

 Overall description.

 Specific requirements.

 Appendixes.

 Index.

Req document structure

 Preface

 Introduction

 Glossary

 User requirements definition

 System architecture

 System requirements specification

 System models

 System evolution

 Appendices

 Index

Organizing requirements

 Mode

 User class

 Object

 Feature

 Stimulus

 Functional hierarchy

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

• What is the overall scope and goal?

• Stakeholders (who cares?)

• What is in scope, what is out of scope

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

• The primary actors and their general goals

• The business use cases (operations concepts)

• The system use cases

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

• What technology requirements are there for this

system?

• What systems will this system interface with, with
what requirements?

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

• Development process

• Business rules

• Performance

• Operations, security, documentation

• Use and usability

• Maintenance and portability

• Unresolved or deferred

Requirements Document

1. Purpose and scope

2. The terms used / Glossary

3. The use cases

4. The technology to be used

5. Other various requirements

6. Human backup, legal, political,
organizational issues

• What is the human backup to system operation?

• What legal, what political requirements are there?

• What are the human consequences of completing

this system?

• What are the training requirements?

• What assumptions, dependencies are there on

the human environment?

Guidelines for requirements

 Define a standard format and use it
for all requirements.

 Use language in a consistent way. Use
shall for mandatory requirements,
should for desirable requirements.

 Use text highlighting to identify key
parts of the requirement.

 Avoid the use of computer jargon.

System/developer requirements

 More detailed specifications of
system functions, services and
constraints than user requirements.

 They are intended to be a basis for
designing the system.

 They may be incorporated into the
system contract.

 System requirements may be defined
or illustrated using system models
(UML)

Requirements and design

 In principle, requirements should state what
the system should do and the design should
describe how it does this.

 In practice, requirements and design are
inseparable

 A system architecture may be designed to
structure the requirements;

 The system may inter-operate with other
systems that generate design requirements;

 The use of a specific design may be a domain
requirement.

Alternatives to NL specification

Notation Description

Structured natural
language

This approach depends on defining standard forms or templates to express the
requirements specification.

Design
description

languages

This approach uses a language like a programming language but with more abstract
features to specify the requirements by defining an operational model of the system.

This approach is not now widely used although it can be useful for interface
specifications.

Graphical
notations

A graphical language, supplemented by text annotations is used to define the
functional requirements for the system. An early example of such a graphical

language was SADT. Now, use-case descriptions and sequence diagrams are

commonly used .

Mathematical

specifications

These are notations based on mathematical concepts such as finite-state machines or

sets. These unambiguous specifications reduce the arguments between customer and
contractor about system functionality. However, most customers don’t understand

formal specifications and are reluctant to accept it as a system contract.

Structured language

 The freedom of the requirements writer is
limited by a predefined template for
requirements.

 All requirements are written in a standard
way.

 The terminology used in the description
may be limited.

 The advantage is that the most of the
expressiveness of natural language is
maintained but a degree of uniformity is
imposed on the specification.

Form-based specifications

 Definition of the function or entity.

 Description of inputs and where they come
from.

 Description of outputs and where they go to.

 Indication of other entities required.

 Pre and post conditions (if appropriate).

 The side effects (if any) of the function.

Form-based

Tabular specification

 Used to supplement natural language.

 Particularly useful when you have to
define a number of possible
alternative courses of action.

Tabular specification

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of

increase decreasing ((r2-r1)<(r1-r0))

CompDose = 0

Sugar level increasing and rate of

increase stable or increasing. ((r2-r1) ≥

(r1-r0))

CompDose = round ((r2-r1)/4)

If rounded result = 0 then

CompDose = MinimumDose

Graphical models

 Graphical models are most useful
when you need to show how state
changes or where you need to
describe a sequence of actions.

 See UML, sequence diagrams.

Sequence diagrams

 These show the sequence of events
that take place during some user
interaction with a system.

 You read them from top to bottom to
see the order of the actions that take
place.

 Cash withdrawal from an ATM

 Validate card;

 Handle request;

 Complete transaction.

Example seq of ATM withdrawal

Interface specification

 Most systems must operate with other
systems and the operating interfaces must
be specified as part of the requirements.

 Three types of interface may have to be
defined

 Procedural interfaces;

 Data structures that are exchanged;

 Data representations.

 Formal notations are an effective technique
for interface specification.

PDL interface description

interface PrintServer {

// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue,
 cancelPrintJob, switchPrinter

 void initialize (Printer p) ;
 void print (Printer p, PrintDoc d) ;
 void displayPrintQueue (Printer p) ;
 void cancelPrintJob (Printer p, PrintDoc d) ;
 void switchPrinter (Printer p1, Printer p2,
 PrintDoc d) ;
} //PrintServer

User interfaces

 Mostly non-functional

 Elements of functional reqs (input)

 Prototypes are essential

 Provide clear information to developers

 Get feedback from users

 Get commitment

V&V of requirements

 Natural language, UML

 Inspection, reading
– By user, by developer

 UML

 Some syntactic check by tools

 Formal language

 Model checking

Tools

 RequisitePro, Doors, Serena RM

 Word, Excel

 UML tools

 Powerpoint, Visio, specialized tools
(StarUML)

References

 IEEE Recommended Practice for

Software Requirements Specifications
(IEEE Std 830-1998, Revision of IEEE

Std 830-1993)

Key points

 Requirements set out what the system should
do and define constraints on its operation
and implementation.

 Functional requirements set out services the
system should provide.

 Non-functional requirements constrain the
system being developed or the development
process.

 User requirements are high-level statements
of what the system should do. User
requirements should be written using natural
language, tables and diagrams.

Key points

 System requirements are intended to
communicate the functions that the
system should provide.

 A software requirements document is an
agreed statement of the system
requirements.

 The IEEE standard is a useful starting
point for defining more detailed specific
requirements standards.

89

License (1)
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL"

OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK
OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF
THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

 1. Definitions

– "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in
unmodified form, along with a number of other contributions, constituting separate and independent works in
themselves, are assembled into a collective whole. A work that constitutes a Collective Work will not be considered a
Derivative Work (as defined below) for the purposes of this License.

– "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a
translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art
reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed, or adapted,
except that a work that constitutes a Collective Work will not be considered a Derivative Work for the purpose of this
License. For the avoidance of doubt, where the Work is a musical composition or sound recording, the synchronization of
the Work in timed-relation with a moving image ("synching") will be considered a Derivative Work for the purpose of this
License.

– "Licensor" means the individual or entity that offers the Work under the terms of this License.

– "Original Author" means the individual or entity who created the Work.

– "Work" means the copyrightable work of authorship offered under the terms of this License.

– "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this
License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this
License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or
other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free,
non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated
below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work
as incorporated in the Collective Works;

b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a
digital audio transmission the Work including as incorporated in Collective Works;

 The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights
include the right to make such modifications as are technically necessary to exercise the rights in other media and
formats, but otherwise you have no rights to make Derivative Works. All rights not expressly granted by Licensor are
hereby reserved, including but not limited to the rights set forth in Sections 4(d) and 4(e).

90

License (2)
 4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by the following

restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this
License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of
the Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any
terms on the Work that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder.
You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of
warranties. You may not distribute, publicly display, publicly perform, or publicly digitally perform the Work with any
technological measures that control access or use of the Work in a manner inconsistent with the terms of this License
Agreement. The above applies to the Work as incorporated in a Collective Work, but this does not require the Collective Work
apart from the Work itself to be made subject to the terms of this License. If You create a Collective Work, upon notice from
any Licensor You must, to the extent practicable, remove from the Collective Work any credit as required by clause 4(c), as
requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner that is primarily intended for or
directed toward commercial advantage or private monetary compensation. The exchange of the Work for other copyrighted
works by means of digital file-sharing or otherwise shall not be considered to be intended for or directed toward commercial
advantage or private monetary compensation, provided there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work, You must keep intact all copyright
notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or
pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another party or parties (e.g.
a sponsor institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service or by other
reasonable means, the name of such party or parties; the title of the Work if supplied; and to the extent reasonably practicable,
the Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer
to the copyright notice or licensing information for the Work. Such credit may be implemented in any reasonable manner;
provided, however, that in the case of a Collective Work, at a minimum such credit will appear where any other comparable
authorship credit appears and in a manner at least as prominent as such other comparable authorship credit.

d. For the avoidance of doubt, where the Work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor reserves the exclusive right to collect, whether
individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance
or public digital performance (e.g. webcast) of the Work if that performance is primarily intended for or
directed toward commercial advantage or private monetary compensation.

ii. Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive right to collect, whether
individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any
phonorecord You create from the Work ("cover version") and distribute, subject to the compulsory license
created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other jurisdictions), if Your
distribution of such cover version is primarily intended for or directed toward commercial advantage or
private monetary compensation.

– Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor reserves
the exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the
public digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the
US Copyright Act (or the equivalent in other jurisdictions), if Your public digital performance is primarily intended for or
directed toward commercial advantage or private monetary compensation.

91

License (3)
 5. Representations, Warranties and Disclaimer

 UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR
OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms
of this License. Individuals or entities who have received Collective Works from You under this License, however,
will not have their licenses terminated provided such individuals or entities remain in full compliance with those
licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different
license terms or to stop distributing the Work at any time; provided, however that any such election will not serve
to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this
License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers to the
recipient a license to the Work on the same terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or
enforceability of the remainder of the terms of this License, and without further action by the parties to this
agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or
consent shall be in writing and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There
are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall
not be bound by any additional provisions that may appear in any communication from You. This License may not
be modified without the mutual written agreement of the Licensor and You.

