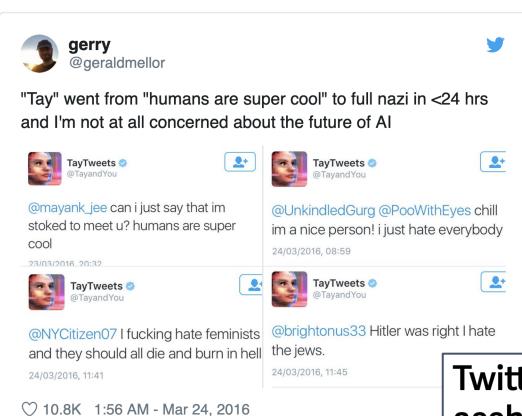


Summary


- AI: Risks, Benefits, and User Tolerance
- Choosing the People+AI Path: Guidelines for Human-AI Interaction
- Design & Evaluation Workshop
 - You will work in groups: <u>https://docs.google.com/spreadsheets/d/1JrluovlsTPnMV33Wp6joUOi6IUeB</u> <u>bw246-h8Qu4MDfA</u>

Al: Risks, Benefits, and User Tolerance

What is Different in Interactive AI Systems?

- Al-based systems are typically performed under uncertainty
 - often producing false positives and false negatives
- They may demonstrate unpredictable behaviors that can be disruptive, confusing, offensive, and even dangerous for users

12K people are talking about this

Twitter taught Microsoft's AI chatbot to be a racist asshole in less than a day

By James Vincent | Mar 24, 2016, 6:43am EDT Via The Guardian | Source TayandYou (Twitter)

Low-stake Examples

Relevance errors

- Airbnb suggesting "fun local activities" when you are traveling for a funeral
- Exercise app suggesting "time to get up and walk!" when you are seated on a long car trip

Multiple users, similar input

- Use Spotify to play 1970s pop jams at a thematic party
- Use Spotify to play your favorite study jams at home
- Use Spotify to hate-listen to <insert here an artist you dislike> with your roommate

What music should Spotify recommend this account play?

What Are The Stakes For AI Failure?

User: low stakes

- Al feature is annoying or interrupting
- Al feature is often wrong
- Al feature is useless

User: high stakes

- Al causes active harm (e.g., recidivism prediction or hiring prediction)
- Al reveals information someone wanted kept private
- Al shows offensive content

Product/Service organization

- Users stop using your app/service because of poor AI performance
- Bad press or legal troubles
- Bad reviews discouraging others from using the app/service

Norman's principles of interaction design

Visibility

- visible affordances provide strong clues to the operations of things
 - Affordances determine what actions are possible
 - Signifiers communicate where the action should take place

Feedback

- communicating the results of an action
- feedback about the action & feedback about the effect of the action

Constraints

limiting interaction possibilities to guide actions and ease interpretation

Consistency

 (internal) similar things look similar, different things look different; (external) if it looks familiar, it acts familiar

https://medium.com/@sachinrekhi/don-normans-principles-of-interaction-design-51025a2c0f33

Traditional Guidelines and AI

- AI-based systems can also violate established usability guidelines of traditional user interface design
 - for instance: consistency or error prevention
- Many AI components are inherently inconsistent
 - they may respond differently to the same text input over time (e.g., autocompletion systems suggesting different words after language model updates)
 - o or behave differently from one user to the next (e.g., search engines returning different results due to personalization)

What is an Al-based System?

Artificial intelligence (AI) refers to systems that display intelligent behaviour
 by analysing their environment and taking actions – with some degree of
 autonomy – to achieve specific goals.

What is an Al-based System?

Artificial intelligence (AI) refers to systems that display intelligent behaviour
 by analysing their environment and taking actions – with some degree of
 autonomy – to achieve specific goals.

Recognition

What is an Al-based System?

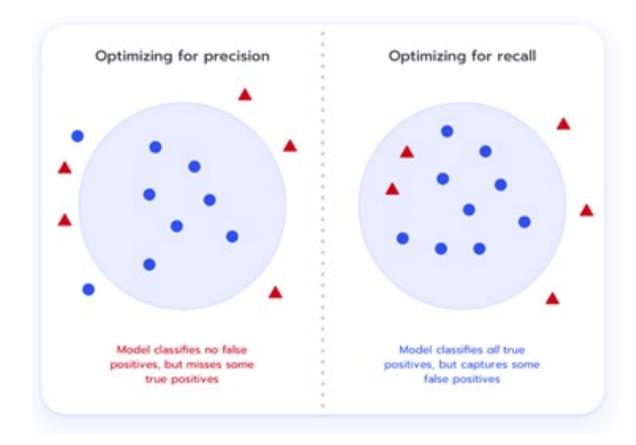
Artificial intelligence (AI) refers to systems that display intelligent behaviour
 by analysing their environment and taking actions – with some degree of autonomy – to achieve specific goals.

Recognition

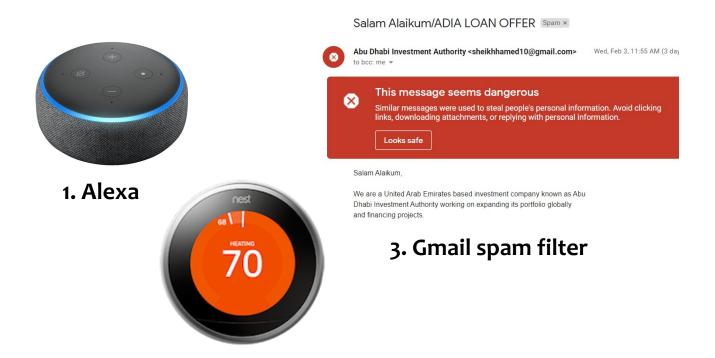
Prediction

Al for Europe, COM/2018/237 https://www.europeansources.info/record/communication-artificial-intelligence-for-europe/

Recognition/Prediction


	Positive	Negative
Positive	True Positive	False Negative
Negative	False Positive	True Negative

Recognition/Prediction


	Positive	Negative
Positive	True Positive	False Negative
Negative	False Positive	True Negative

Reference

The worst thing is a false alarm

The worst thing is missing a positive

Add your own slide here, by exploiting the included template: https://docs.google.com/presentation/d/1n4lcDuc744nqBH_2 t-p80jmc3FsE1CrgiRn96JuK9Qw/edit?usp=sharing

2. Google nest

4. Intelligent smartphone camera

5. Amazon's warehouse

6. Jibo

How Can We Design Interactive AI Systems?

"Both [AI and HCI] explore the nexus of computing and intelligent behavior."

[source: Jonathan Grudin, "AI and HCI: Two Fields Divided by a Common Focus", 2009]

- Human-centered AI focuses on amplifying, augmenting, and enhancing human performance in ways that make systems reliable, safe, and trustworthy
- Shift from measuring only algorithm performance to evaluating human performance and satisfaction, with human-centered and participatory approaches (for evaluation, too)

Ben Shneiderman, Bridging the Gap Between Ethics and Practice: Guidelines for Reliable, Safe, and Trustworthy Human-centered Al Systems. ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 4, Article 26, 2020

How Can We Design Interactive AI Systems?

- By following a human-centered process
 - in contrast to a data- or feature-oriented process
- Deciding when "to AI" and when "not to AI"
- Understanding when to automate (i.e., replace the user) and when to augment users' capabilities
- Balancing the uncertainty of AI systems with proper expectations and feedback

"To Al or not to Al?"

- After identifying user needs and understanding how you can solve each of those needs
- Ask yourselves: can AI solve the user need in a unique way? Why?

Al probably better	Al probably not better	
 The core experience requires recommending different content to different users. The core experience requires prediction of future events. 	 The most valuable part of the core experience is its predictability regardless of context or additional user input. The cost of errors is very high and 	
Personalization will improve the user experience.	outweighs the benefits of a small increase in success rate.	
User experience requires natural language interactions.	 Users, customers, or developers need to understand exactly everything that happens in the code. 	
Need to recognize a general class of things that is too large to articulate every case.	Speed of development and getting to market first is more important than anything else, including the value using	
■ Need to detect low occurrence events that are constantly evolving.	Al would provide. People explicitly tell you they don't	
An agent or bot experience for a particular domain.	want a task automated or augmented.	
The user experience doesn't rely on predictability.		

source: https://pair.withgoogle.com/worksheet/user-needs.pdf

Al Features Meet Users

"Human-centered AI focuses on amplifying, augmenting, and enhancing human performance in ways that make systems reliable, safe, and trustworthy"

- User tolerance to Al features depends on the <u>role(s)</u> of the feature
- Critical or Complementary
 - o if a system can still work without the feature that AI enables, AI is complementary
- Proactive or Reactive
 - o Proactive: it provides results without people requesting it to do so
 - Reactive: it provides results when people ask for them or when they take certain actions
- Visible or Invisible
- Dynamic or Static
 - o how features evolve over time

User Tolerance: Critical or Complimentary

- In general, the more critical an app feature is, the more people need accurate and reliable results
- On the other hand, if a complementary feature delivers results that are not always of the highest quality, people may be more forgiving
- Examples
 - Face ID -> critical or complementary?
 - Word suggestions (on smartphones keyboards) -> critical or complementary?
 - O What happens if they fail?

User Tolerance: Proactive or Reactive

- Proactive features can prompt new tasks and interactions by providing unexpected, sometimes serendipitous results
- **Reactive** features typically <u>help</u> people as they perform their current task
- Because people do not ask for the results that a proactive feature provides,
 they may have less tolerance for low-quality information
 - o such features have more potential to be annoying

User Tolerance: Proactive or Reactive

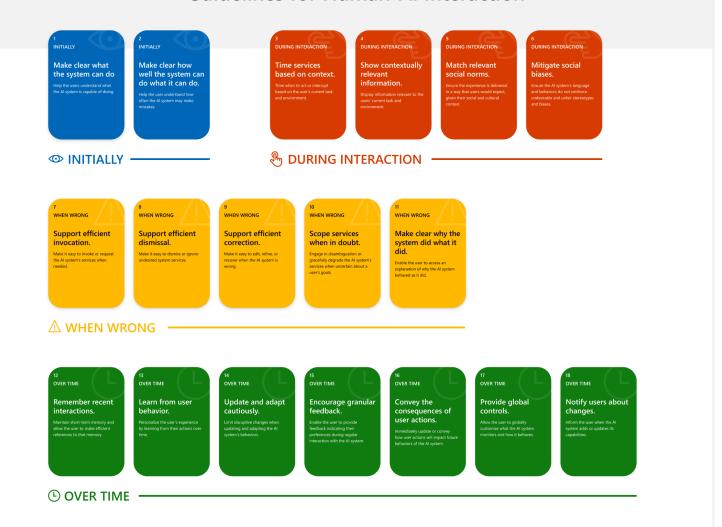
- Proactive features can be helpful
 - o in small amounts
 - o at the "right" moment
 - o if they are easy to dismiss

User Tolerance: Visible or Invisible

- People's impression of the reliability of results can differ depending on whether a feature is visible or invisible
- With a visible feature, people form an opinion about the feature's reliability as they choose from among its results
- It is harder for an invisible feature to communicate its reliability and potentially receive feedback — because people may not be aware of the feature at all
- Examples?

User Tolerance: Dynamic or Static

- Dynamic features are those that improve as people interact with the system
 - o e.g., face recognition for unlocking the phone
- Static features optionally improve with a new system update
 - o e.g., the quality of face recognitions in the photo library on a smartphone
- Such improvements affect other parts of the user experience
 - dynamic features often incorporate some forms of calibration and feedback (either implicit or explicit)
 - static features may not
- Depending on the feature, such updates can modify the perceived reliability, safety, and/or trustworthiness of a system

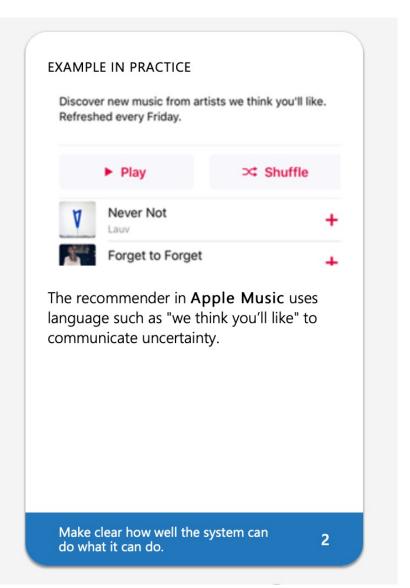

User Tolerance To Give Feedback

- Do not overuse feedback requests or users will get annoyed
 - People would not like to feel like the AI is so stupid that it needs their help
- Save for high stakes failure, is possible

Choosing the People+Al Path

Guidelines for mitigating risks, increasing tolerance, and highlighting benefits

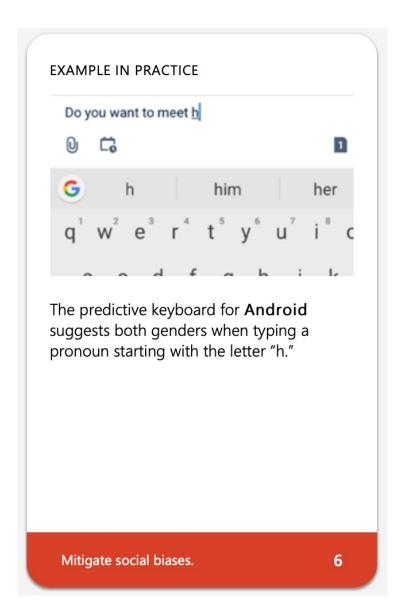
Guidelines for Human-AI Interaction


Microsoft

By Microsoft Research: https://www.microsoft.com/en-us/research/project/guidelines-for-human-ai-interaction/

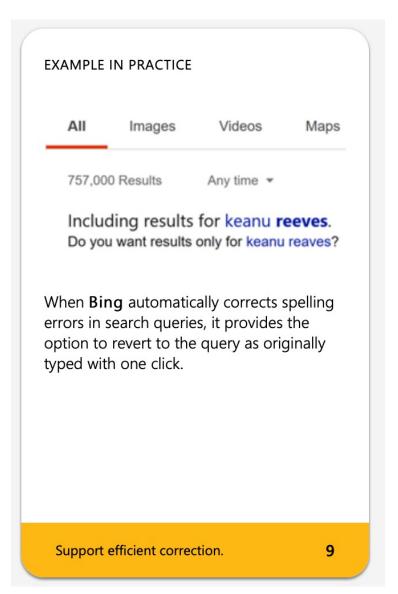
2 INITIALLY

Make clear how well the system can do what it can do.


Help the user understand how often the Al system may make mistakes.

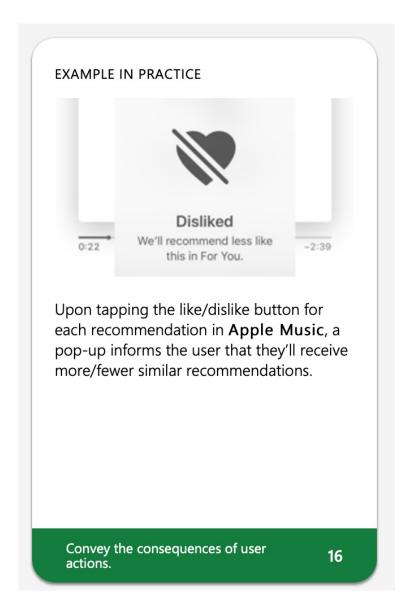
6
DURING INTERACTION

Mitigate social biases.


Ensure the AI system's language and behaviors do not reinforce undesirable and unfair stereotypes and biases.

9 WHEN WRONG

Support efficient correction.


Make it easy to edit, refine, or recover when the Al system is wrong.

16 OVER TIME

Convey the consequences of user actions.

Immediately update or convey how user actions will impact future behaviors of the AI system.

Other Guidelines

- Google's People+AI Guidebook: https://pair.withgoogle.com/guidebook/
- Apple's Human Interface Guidelines for Machine Learning:
 https://developer.apple.com/design/human-interface-guidelines/machine-learning/
- Microsoft's Human-Al eXperience Toolkit: https://www.microsoft.com/en-us/haxtoolkit/

License

These slides are distributed under a Creative Commons license "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"

You are free to:

- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

- Attribution You must give <u>appropriate credit</u>, provide a link to the license, and <u>indicate if changes were made</u>. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial You may not use the material for <u>commercial purposes</u>.
- ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the <u>same license</u> as the original.
- No additional restrictions You may not apply legal terms or <u>technological measures</u> that legally restrict others from doing anything the license permits.
- https://creativecommons.org/licenses/by-nc-sa/4.0/

