
React Router
Applications have more than one page…

Fulvio Corno

Luigi De Russis

Enrico Masala

Applicazioni Web I - Web Applications I - 2020/2021

2

Outline

• Objective and problems
• A Solution, the React way: React Router

Applicazioni Web I - Web Applications I - 2020/2021

3

OBJECTIVES AND PROBLEMS
Multi-page Single Page Applications

Applicazioni Web I - Web Applications I - 2020/2021

Full Stack React, chapter “Routing”

React Handbook, chapter “React Router”

4

Supporting Complex Web Applications

• Switching between many different page layouts
• Managing the flow of navigation across a set of “pages”
• Maintaining the default web navigation conventions (back, forward,

bookmarks, …)
• Allowing URLs to convey information
• Allowing re-loading KBs of JavaScript at every page change
• Keeping the state across page changes
• …

Applicazioni Web I - Web Applications I - 2020/2021

5

Example

Applicazioni Web I - Web Applications I - 2020/2021

• Different layout
and contents

• Some common
parts

• No “page reload”
• URL changes

accordingly

6

Some Use Cases

• Master list / detail view
• Logged / Unlogged pages
• Sidebar navigation
• Modal content
• Main Contents vs. User Profile vs. Setting vs. …

Applicazioni Web I - Web Applications I - 2020/2021

7

Using URLs for Navigation State

• URLs determine the type of the page or the section of
the website
– Changing page ⇆ Changing the URL

• URLs also embed information about the item IDs,
referrers, categories, filters, etc.

• URLs can be shared/saved/bookmarked, and they are
sufficient for rebuilding the whole exact page
– Deep Linking

• Back and Forward buttons navigate the URL history

Applicazioni Web I - Web Applications I - 2020/2021

Example URLs on
facebook.com:

/

/profile.name

/profile.name
/posts/12341232124
22123

/pagename

/pages/?category=y
our_pages

8

Using URLs for Navigation State

• URLs determine the type of the page or the section of
the website
– Changing page ⇆ Changing the URL

• URLs also embed information about the idem IDs,
referrers, categories, filters, etc

• URLs can be shared/saved/bookmarked, and they are
sufficient for rebuilding the whole exact page
– Deep Linking

• Back and Forward buttons navigate the URL history

Applicazioni Web I - Web Applications I - 2020/2021

Example URLs on
facebook.com:

/

/profile.name

/profile.name
/posts/12341232124
22123

/pagename

/pages/?category=y
our_pages

Ø With any URL, the React application will always return the
same page (index.html/index.js) that will load and
mount the same App

Ø The URL is queried by the App to customize the render

9

THE REACT ROUTER
React as a REST Client

Applicazioni Web I - Web Applications I - 2020/2021

https://reacttraining.com/react-router/

https://flaviocopes.com/react-router/

Full Stack React, chapter “Routing”

React Handbook, chapter “React Router”

https://reacttraining.com/react-router/
https://flaviocopes.com/react-router/

10

React-Router

• The problems associated with multi-page navigation and URL
management are usually handled by router libraries

• A JavaScript Router manages
– Modifying the location of the app (the URL)
– Determining what React components to render at a given location

• In principle, whenever the user clicks on a new URL
– We prevent the browser from fetching the next page
– We instruct the React app to switch in & out components

Applicazioni Web I - Web Applications I - 2020/2021

11

React-Router

• React does not contain a specific router functionality
– Different router libraries are available
– The most frequently adopted is react-router
– npm install react-router-dom

Applicazioni Web I - Web Applications I - 2020/2021

https://reactrouter.com/
https://github.com/ReactTraining

/react-router

https://reactrouter.com/
https://github.com/ReactTraining/react-router

12

Features

• Connects React app navigation with the browser’s native navigation
features

• Selectively shows components according to the current routes
– Rules matching URL fragments

• Easy to integrate and understand; it uses normal React components («it’s
just React»)
– Links to new pages are handled by <Link>, <NavLink> and <Redirect>
– For determining that to render we use <Route> and <Switch>
– The whole application is wrapped in a <Router> container

Applicazioni Web I - Web Applications I - 2020/2021

13

Overview of React-Router

Applicazioni Web I - Web Applications I - 2020/2021

<Link to='/'>Home</Link>
<Link to='/about'>About</Link>
<Link to='/dash'>Dashboard</Link>

<Switch>
<Route exact path="/">

<Home />
</Route>
<Route path="/about">

<About />
</Route>
<Route path="/dashboard">

<Dashboard />
</Route>

</Switch>

'/about'
<Router>

</Router>

<Router>

</Router>

14

<Router>

• Different routers are available: <BrowserRouter>, <HashRouter>,
<MemoryRouter>, <NativeRouter>, <StaticRouter>

• BrowserRouter uses normal URLs and the HTML5 Location API
– Recommended for modern browsers
– Requires some server configuration
– import { BrowserRouter as Router } from 'react-router-dom' ;

• HashRouter uses ‘#’ in the URL
– Compatible with older browsers
– Requires no config on the server

• Must wrap the entire App

Applicazioni Web I - Web Applications I - 2020/2021

15

<Router>

• Different routers are available: <BrowserRouter>, <HashRouter>,
<MemoryRouter>, <NativeRouter>, <StaticRouter>

• BrowserRouter uses normal URLs and the HTML5 Location API
– Recommended for modern browsers
– Requires some server configuration
– import { BrowserRouter as Router } from 'react-router-dom' ;

• HashRouter uses ‘#’ in the URL
– Compatible with older browsers
– Requires no config on the server

• Must wrap the entire App

Applicazioni Web I - Web Applications I - 2020/2021

https://create-react-app.dev/docs/deployment/#serving-apps-with-client-side-routing

Not needed with the React Development Server.

When served as a static bundle, all paths must be
mapped to index.html:

app.use(express.static('build'));

app.get('/*', function (req, res) {
res.sendFile('build/index.html');

});

More on this -> next weeks!

https://create-react-app.dev/docs/deployment/

16

Selective Render

• Content wrapped in <Route> will be rendered only if the URL path
matches the specification
– path = '/fragment' uses regexp to check if the URL matches
– component = {MyComponent} renders the specified component if the path

matches

Applicazioni Web I - Web Applications I - 2020/2021

<Router>
<div>
<Route exact path="/" component={Home} />
<Route path="/news" component={NewsFeed} />

</div>
</Router>

17

Route matching methods

• path = regular expression matched against the URL
– If path is missing, then the URL always matches

• Options
– exact: revert to exact string comparison (no regexp)
– strict: if the pattern has a trailing / , then the URL must have a trailing /
– sensitive: the match becomes case-sensitive (default: insensitive)

Applicazioni Web I - Web Applications I - 2020/2021

18

Dynamic Routes

• Routes may have parametric segments, with the :name syntax in the
path specification
– <Route exact path="/post/:id" component={Post} />
– The ‘id’ part will be available as match.params.id

Applicazioni Web I - Web Applications I - 2020/2021

<Route exact path="/post/:id" render={({match}) => (
<Post post={posts.find(

p => p.id === match.params.id)} />
)} />

19

Route render methods

• <Route component={MyComponent}/>
– If path matches, render MyComponent
– May also specify <MyComponent> by nesting it inside <Route>

• <Route render={ () => <C1><C2/></C1> } />
– If path matches, render the result of the function (e.g., JSX expression)

• <Route children={ ({match}) => <C1><C2/></C1> } />
– Always render the result of the function (e.g., JSX expression)
– Useful if the expression internally self-customizes according to match status

• In all cases, the component or the function receives 3 props
– match: the matching status of the route
– location: the current browser location (URL)
– history: a reference to a history object wrapping browser’s history

Applicazioni Web I - Web Applications I - 2020/2021

Preferred

20

Route match object

• With component={} you have props.match inside the component
• With render={} or children={}, you have ({match}) => () in the

function
• match is composed by

– params (object) Key/value pairs corresponding to the dynamic segments of the path
– isExact (boolean) true if the entire URL was matched (no trailing characters)
– path (string) The path pattern used to match. Useful for building nested <Route>s
– url (string) The matched portion of the URL. Useful for building nested <Link>s

• Note: with children, match may be null (null will be passed to the
render function)

Applicazioni Web I - Web Applications I - 2020/2021

https://reacttraining.com/react-router/web/api/match

https://reacttraining.com/react-router/web/api/match

21

Hooks

• The three routing props, together
with the route's parametric
segment, are available as hooks
– useHistory()
– useLocation()
– useParams()
– useRouteMatch()

• useRouteMatch is useful for
accessing the match data without
actually rendering a <Route>

Applicazioni Web I - Web Applications I - 2020/2021

const history = useHistory();
history.push('/home');
// navigate to '/home'

const location = useLocation();
console.log(location.pathname);
// e.g., /blog

const { slug } = useParams();
console.log(slug);
// if <Route path="/blog/:slug">
// and the URL is "/blog/3"
// it will print "3"

22

<Switch>
• General rule: all <Route>s whose

path matches the URL are rendered
– by default, Route is inclusive

• Sometimes, we want to render only
one, of a group of Routes

• <Switch> may include many
<Route> (or <Redirect>), and
will render only the first child that
matches
– Routes included in Switch are

exclusive
– Always start with the most restrictive

rules

Applicazioni Web I - Web Applications I - 2020/2021

<Switch>
<Route exact path="/">

<Home />
</Route>
<Route path="/about">

<About />
</Route>
<Route path="/:user">

would also match /about
<User />

</Route>
<Route> no path: always matches

<NoMatch />
</Route>

</Switch>

23

<Link>

• The Link component is used to trigger new routes
– Don’t use <a> links

• Attribute to={} specifies the target URL
– As a string
– As an object {pathname, search, hash, state}
– As a function returning one of the above

• replace overwrites (rather than adding) the URL in the history
• Will generate a DOM <a> component
– Extra attributes are

forwarded to the <a>

Applicazioni Web I - Web Applications I - 2020/2021

<Link to={'/dashboard'}>Dashboard</Link>
<Link to={'/about'}>About</Link>

24

Link Destination Object

• <Link to={object}/>, with the object composed of:
– pathname: A string representing the path to link to
– search: A string representation of query parameters (useful for dynamically

generated parameters)
– hash: A hash to put in the URL, e.g., #a-hash (not used with BrowserRouter)
– state: State to persist to the location (useful to initialize the state after the route

has been followed)

Applicazioni Web I - Web Applications I - 2020/2021

25

Passing State Among Pages

• If you need to pass information that will be available whenever the app
returns to a specific location, you can include it in to={object}

• Alternative to pass information as param in the URL
• Available as location.state in the target <Route>

Applicazioni Web I - Web Applications I - 2020/2021

<Link to={{
pathname: "/update",
state: { examCode: code }

}}>Update</Link>

<Route path="/update"
render={({location}) =>

<ExamForm
examCode={location.state.examCode}/>

}/>

26

Tips

• location.state can be accessed also via useLocation() hook
• location.state may not be set if the URL is erroneously invocated or

directly loaded: double check it is correctly set before use

Applicazioni Web I - Web Applications I - 2020/2021

<Route path="/update"
render={() => <ExamForm … /> }/>

function ExamForm(props) => {
const location = useLocation();
const examCode = location.state ?

location.state.examCode : ''
}

<Route path="/update"
render={({location}) =>

<ExamForm
examCode={location.state ?
location.state.examCode : ''}/>

}/>

27

<NavLink>

• A special version of the <Link> that will add styling attributes to the
rendered element when it matches the current URL

• Useful for automatically highlighting the current item in a menu
– activeClassName (string): the class to give the element when it is active

(default: 'active'). Added to className
– activeStyle (object): the styles to apply to the element when it is active

Applicazioni Web I - Web Applications I - 2020/2021

<NavLink
to={`${albumsPathname}/${album.id}`}
activeClassName='active'
className='item'
key={album.id}

>${album.name}</NavLink>

28

<Redirect>

• When rendered, forces the
navigation to a new location

• Used to “programmatically” force
a location change
– In event handlers, you often need

to “jump” to a given page
– Might use history.push
– Easier way: set a state property that

will cause a render of a
<Redirect>

• x

Applicazioni Web I - Web Applications I - 2020/2021

https://tylermcginnis.com/react-router-programmatically-navigate/

const [submitted, setSubmitted] =
useState(false) ;

handleSubmit = (ev) => {
ev.preventDefault();
setSubmitted(true);

}

if (submitted)
return <Redirect to='/' />;

else
return ...

https://tylermcginnis.com/react-router-programmatically-navigate/

29

Example

Applicazioni Web I - Web Applications I - 2020/2021

/

/update/add

https://github.com/polito-WA1-AW1-2021/react-scores/tree/with_router

https://github.com/polito-WA1-AW1-2021/react-scores/tree/with_router

30

License
• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
• You are free to:

– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2020/2021

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

