
Components and
State
The Foundations of React

Fulvio Corno

Luigi De Russis

Enrico Masala

Applicazioni Web I - Web Applications I - 2020/2021

2

Outline

• React Components

– Props and State

• React design process

– Top-down information flow

Applicazioni Web I - Web Applications I - 2020/2021

3

COMPONENTS: PROPS AND STATE

Applicazioni Web I - Web Applications I - 2020/2021

https://reactjs.org/docs/react-component.html

Full Stack React, Chapter “Advanced Component
Configuration with props, state, and children”

React Handbook, Chapters “Props” and “State”

https://reactjs.org/docs/react-component.html

4

Props, State, Context

Applicazioni Web I - Web Applications I - 2020/2021

React component

props

context

state

element tree

Child
component

Child
component

Child
component

props
props

props

5

Props, State, Context

• Props are immutable pieces of data that are passed into child
components from parents

• State is where a component holds data, locally

– When state changes, usually the component needs to be re-rendered

– State is private to the component and is mutable from inside the component, only

• Context is a sort of “global” and “implicit” props, that are automatically
passed to all interested components

Applicazioni Web I - Web Applications I - 2020/2021

6

Passing Props

• In JSX, every attribute is converted to a prop

– <Header headerText='Hello'/>

– props.headerText will contain the string "hello"

• props is the argument of the Component Function and collects all
passed props

– They are all read-only

• May be any JS object, or other React elements

– <UserError level={3}/>

– <ResultsTable displayData={latestResults}/>

Applicazioni Web I - Web Applications I - 2020/2021

7

State

• An object containing local data, private to a component, that may be
mutated by the component itself

• To define a state variable, use the useState hook

Applicazioni Web I - Web Applications I - 2020/2021

8

State Example

function WelcomeButton(props) {

let [english, setEnglish] =

useState(true) ;

return (<button>

{english ? 'Hello' : 'Ciao'}

</button>) ;

}

• Call useState with the initial
version of an object describing
the component state

• Inside the component, you may
refer the state variable to
customize the result according to
the current state

• Never n-e-v-e-r modify the state
variable directly
– Always use the setVariable function

Applicazioni Web I - Web Applications I - 2020/2021

9

State Modifications

• All modifications to the state
must be requested through
setVariable(newValue)

• It will apply the modification
asynchronously (not
immediately)

• New Value as a function

– (old_state) =>
updated_state

– Must return a new state value

– Must not mutate the passed-in
state

Applicazioni Web I - Web Applications I - 2020/2021

10

Calling State Changes

• State changes are usually
determined by asynchronous
events

– DOM event handlers

– Server responses (e.g., API calls)

• The event handler is a function
that in turn calls setVariable

function WelcomeButton(props) {

let [english, setEnglish] =

useState(true) ;

const toggleLanguage = () => {

setEnglish(e => !e) ;

}

return (<button onClick={toggleLanguage}>
{english ? 'Hello' : 'Ciao'}

</button>);

}

Applicazioni Web I - Web Applications I - 2020/2021

11

Calling State Changes

• State changes are usually
determined by asynchronous
events

– DOM event handlers

– Server responses (e.g., API calls)

• The event handler is a function
that in turn calls setVariable

– Often implemented as an arrow
function

function WelcomeButton(props) {

let [english, setEnglish] =

useState(true) ;

return (<button

onClick={()=>setEnglish((eng)=>(!eng))}>
{english ? 'Hello' : 'Ciao'}

</button>);

}

Applicazioni Web I - Web Applications I - 2020/2021

12

Function or Object in setVariable?

• If the logic for computing the next state depends on the current state,
always use a function

• ❌ setCounter(counter+1)
– counter is evaluated when setCounter is called

– The new state will be assigned later, asynchronously

– In case many asynchronous requests are made, some update may rely on out-of-
date information

• ✔ setCounter((cnt)=>(cnt+1))
– The arrow function will be evaluated when the async call is made, with an up-to-

date value of cnt: guaranteed to have the latest value

Applicazioni Web I - Web Applications I - 2020/2021

https://medium.com/@wisecobbler/using-a-function-in-
setstate-instead-of-an-object-1f5cfd6e55d1

https://medium.com/@wisecobbler/using-a-function-in-setstate-instead-of-an-object-1f5cfd6e55d1

13

Can Children Mutate Parent’s State?

• Each button may be selected or
not, but only one may be
selected at a time

• The information about what
button is selected may not be in
the button

• It is a state of a container
component for “button group”

Applicazioni Web I - Web Applications I - 2020/2021

14

Analysis

Applicazioni Web I - Web Applications I - 2020/2021

App

ButtonGroup

SimpleButton

button

SimpleButton

button

SimpleButton

button

…

…

props.names=['Chess', 'Poker', 'Black Jack', 'Go']

selected
(state)

props.name='Poker’
props.index=1
props.selected=false

<button> attributes
Bootstrap classes

15

How To Change The Chosen Button?

• Handle onClick event from the button

• ButtonGroup must offer a method for changing the chosen option

– will call setSelected()

• The method reference must be passed down to SimpleButton, with all
other props

Applicazioni Web I - Web Applications I - 2020/2021

16

Solution

Applicazioni Web I - Web Applications I - 2020/2021

App

ButtonGroup

SimpleButton

button

SimpleButton

button

SimpleButton

button

…

…

props.names=['Chess', 'Poker', 'Black Jack', 'Go']

state.chosen props.name='Poker’
props.index=1
props.selected=false
props.choose -> choose={chooseButton}

<button> attributes
Bootstrap classes
onClick={() =>
props.choose(props.index)}

const chooseButton =
(index) =>
setSelected(index);

17

React Design Hints

• Try to implement stateless components instead of stateful ones

– Stateless components are more reusable

– Stateless components are faster to execute

– Stateless components may be declared as a pure function

• Move state to common ancestors (“state lifting”)

• Pass state down to the children using props

• Allow children to ask for state updates, by passing down callback
functions

Applicazioni Web I - Web Applications I - 2020/2021

18

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2020/2021

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

