
Client-Server
interactions in React
Re-Connecting to REST APIs

Enrico Masala

Fulvio Corno

Luigi De Russis

Applicazioni Web I - Web Applications I - 2019/2020

2

Outline

• Handling API calls in React

• The “two servers” problem

– Two servers + CORS
• Variant: React Development Server

– Build + Express (single server)

– Also: Understanding Build (webpack, imports, etc)

Applicazioni Web I - Web Applications I - 2019/2020

3

HANDLING API CALLS IN REACT
React as a REST Client

Applicazioni Web I - Web Applications I - 2019/2020

https://www.robinwieruch.de/react-fetching-
data

The Road to Learn React, Chapter “Getting Real
with APIs”

Taming the State in React, Chapter “Local State
Management”

https://www.robinwieruch.de/react-fetching-data

4

Main questions

• How to integrate remote (REST) APIs

• Where/when to load data from remote APIs?

• Delays and “loading…”

• Updating remote data

Applicazioni Web I - Web Applications I - 2019/2020

5

Different kinds of state

Entity State (or Application State)

• Retrieved from the back-end

• Should update the back-end
– On user-initiated add/modify/delete

actions

• Should periodically check for
updates
– Caused by other users, by other open

sessions, or by connected systems

• Globally managed, accessible by
various components

View State (or Presentation State)

• Not stored in the backend

• Does not need to persist

• Lives and dies within the controlling
Component

• Implemented ad Local State
– this.state

– this.setState

Applicazioni Web I - Web Applications I - 2019/2020

6

Remote Application state

• Application State is stored into a remote database, accessible by REST
APIs

• Dehydrating state means extracting the state from the React application

– May happen at several times during application execution

– Should happen whenever something (in the Application State) is modified

• Rehydrating state means retrieving state from the database

– Must happen when the application bootstraps

– Best place: inside componentDidMount() lifecycle method

Applicazioni Web I - Web Applications I - 2019/2020

7

Rehydrating at mount time
componentDidMount() {
fetch('/api/items') // backend API call
.then(response => response.json())
.then(archivedItems => this.setState(rehydrateItems(archivedItems)));

}

function rehydrateItems(archivedItems) {
return function(prevState) { // the setState callback function
return { // build new state
archivedItems: [
...prevState.archivedItems, // existing state (if any)
...archivedItems // merged with new state (if any)

]
};

};
}

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/faq-ajax.html

https://reactjs.org/docs/faq-ajax.html

8

Dehydrating during updates

<ItemList ... addItem={this.addItem} .../>

addItem = (newItem) => {

fetch('/api/items', {

method: 'post',

body: JSON.stringify(newItem)

}).then(...).catch(...);

this.setState((state)=>{ [...state.items, newItem] }) ;

}

Applicazioni Web I - Web Applications I - 2019/2020

The two updates (remote API, local
state) run in parallel.

Optimistic state update: assumes that
remote state will be updated without

errors => Risky

9

“Loading…” indicators

• Rehydrating may require some
time, while the component renders
“empty” (with the initial state)

• Use a local state variable (e.g.,
loading) to indicate whether
rehydrating has completed

• The render() will display a
message (or a spinner image) if
loading===true

componentDidMount() {
this.setState(
{loading: true});

apiClient.loadItems()
.then(people => {

this.setState({
loading: false,
people: people});

});
}

Applicazioni Web I - Web Applications I - 2019/2020

10

What component should “fetch” the data?

• The fetching component should be:

– A common parent for all components interested in this data

– A common parent for all components that must show loading indicators

– A common parent for all components that need to display error messages

• May be the component holding the state do be Rehydrated

• May be a component below the one holding the state, if a rehydrating
function is passed down as a prop

Applicazioni Web I - Web Applications I - 2019/2020

11

API Client Classes

• Recommendation: keep your fetch methods in a separate JS module
(e.g., API.js)

• Keeps details of REST methods inside the API module

– API should not depend on React or application state/props

– Application code should not call fetch or have any REST information

• Allows easy swapping with “stub” methods for testing

Applicazioni Web I - Web Applications I - 2019/2020

12

Conceptual architecture

Applicazioni Web I - Web Applications I - 2019/2020

React Component

this.state

componentDidMount
Event handlers

API.js

fetch()

Database
(SQLite, MySQL, ...)

DAO.js

Express web application

DOM

app.get/.post route

JSON/HTTP

React
Application

REST
API
Server

13

Local Storage

• Modern browsers also have client-side [semi-]permanent storage

• Key-value stores

– Local Storage: permanently stored in the browser, can be retrieved also on future
visits

– Session Storage: expires when the browser session is closed

• Follow the same logic as remote storage (but they are synchronous and
fast)

• May be combined with remote storage

Applicazioni Web I - Web Applications I - 2019/2020

https://www.robinwieruch.de/local-storage-react

https://www.robinwieruch.de/local-storage-react

14

Data caching

• The result of read APIs (GET) may be cached in the Local Storage (or
application state, or application Context)

• The API Client module may implement a caching layer

• Future GETs for the same REST Resource may return the result from the
cache, rather than the remote server

• But remember: cache invalidation is one of the hardest problems in
Computer Science!

Applicazioni Web I - Web Applications I - 2019/2020

15

THE “TWO SERVERS” PROBLEM
A Client and a Server walk into a bar…

Applicazioni Web I - Web Applications I - 2019/2020

https://www.robinwieruch.de/react-fetching-
data

Full Stack React, Chapter “Using Webpack with
Create React App”

https://www.robinwieruch.de/react-fetching-data

16

Conceptual architecture

Applicazioni Web I - Web Applications I - 2019/2020

fetch()

React
Application

React
Application
Server

Initial
HTTP
requests

Browser

React Development Server

React Components

React Components

React Server

npm start
(from react-scripts)

Does NOT run Express
May NOT write your

own routes

17

Conceptual architecture

Applicazioni Web I - Web Applications I - 2019/2020

fetch() Express web application

app.get/.post route

JSON/HTTP

React
Application

REST
API
Server

Browser

React Components

API Server node index.js

Will NOT understand JSX
Does NOT know React

Components

18

Conceptual architecture

Applicazioni Web I - Web Applications I - 2019/2020

fetch() Express web application

app.get/.post route

JSON/HTTP

React
Application

REST
API
Server

React
Application
Server

Initial
HTTP
requests

Browser

React Development Server

React Components

React Components

React Server

API Server

19

Issues

• Deployment

– One-server-does-all or two-separate-servers?

– Development vs Production trade-off
• convenience/debug/turnaround time vs performance/security

– Cross-Origin security limitations

• Opportunities

– Separate the load

– Use any API Server (even 3rd party ones)

Applicazioni Web I - Web Applications I - 2019/2020

20

Express
http://localhost:3000

3 Possible Solutions

Applicazioni Web I - Web Applications I - 2019/2020

REST API Server (Express)
http://localhost:3001 + Routes

React Application Server
http://localhost:3000

Browser

REST API Server
Routes

React Application
Bundle

Static files

Browser

REST API Server
(Express)

http://localhost:3001

React Application Server
http://localhost:3000

Browser

Proxy

CORS

21

RUNNING TWO SEPARATE SERVERS
Side-by-side deployment

Applicazioni Web I - Web Applications I - 2019/2020

https://www.newline.co/fullstack-
react/articles/using-create-react-app-with-a-
server/

Full Stack React, Chapter “Using Webpack with
Create React App / Using Create React App with
an API server”

https://www.newline.co/fullstack-react/articles/using-create-react-app-with-a-server/

22

Double-Server Setup

• React Web Server and REST API
server are hosted separately

– Different hosts, and/or

– Different ports

• The browser:

– Receives the React application

– Directs the API requests to the REST
server

Applicazioni Web I - Web Applications I - 2019/2020

23

Double-Server Setup

• Must run two web servers

– React project: npm start

– Express project: node index.js

– Two projects, in two different
directories (or different servers)

• Problem: handle CORS

Applicazioni Web I - Web Applications I - 2019/2020

24

Advantages and disadvantages

• Servers are easy to deploy

• Scalable solution: requests are
sent to the appropriate server

• Only possible configuration if the
REST API is provided by a third
party
– Public APIs

• Need to configure cross-origin
resource sharing (CORS) on API
server

• Requires using absolute URLs to
access APIs

• Wrongly configured CORS might
be a security risk (undesired
access to APIs from e.g. mock
websites)

Applicazioni Web I - Web Applications I - 2019/2020

25

How to configure

• Configure CORS on API server for development

• In production mode, use different domains for React and API servers,
NEVER allow CORS requests from any origin, always specify origin

Applicazioni Web I - Web Applications I - 2019/2020

// index.js (node express server)

//Enable All CORS Requests (for this server)
app.use(cors());
//Use ONLY for development, otherwise restrict domain

26

Example

API.js in the React Application
const APIURL=new URL('http://localhost:3001');

async function getCourses() {
return fetch(new URL('/courses', APIURL))

.then((response)=>{
if(response.ok) {

return response.json() ;
} else {

throw response.statusText;
}

})
.catch((error)=>{
throw error;

});
}

index.js for the API Server
const express = require('express');
const port = 3001;
const cors = require('cors');
const app = express();
app.use(cors());

app.get('/courses', (req, res) => {
dao.listCourses()

.then((courses) => res.json(courses))

.catch((err)=>
res.status(503)

.json(dbErrorObj));
});

app.listen(port, () => console.log(`Example app
listening at http://localhost:${port}`));

Applicazioni Web I - Web Applications I - 2019/2020

Called in
componentDidMount()

Calls DAO.js

27

USING THE REACT DEVELOPMENT PROXY
Double-Server made Easier

Applicazioni Web I - Web Applications I - 2019/2020

https://create-react-app.dev/docs/proxying-api-
requests-in-development/

Full Stack React, Chapter “Using Webpack with
Create React App / Using Create React App with
an API server”

https://create-react-app.dev/docs/proxying-api-requests-in-development/

28

API Server behind Application Server

• A feature provided by the React
Development Server

– uses react-scripts development
modules

• Avoids the need to set-up CORS

• The Browser thinks there is only
one server

Applicazioni Web I - Web Applications I - 2019/2020

29

API Server behind Application Server

• Browsers access only one server:
the React application server

• The React web server is
configured to act as a proxy for
certain requests

• Those requests are sent to
another web server via a proxy
mechanism

• The proxy returns the response
unaltered as its own response

Applicazioni Web I - Web Applications I - 2019/2020

30

How to configure

• Just add one line in package.json originally written by create-react-app

• NB: Works only in development mode while using the infrastructure of
the create-react-app package

Applicazioni Web I - Web Applications I - 2019/2020

// package.json
{...
...,
"proxy": "http://localhost:3001",
}

31

Proxy rules

• The React development server will serve requests directly if:
– It is a recognized static asset (e.g., image, css, …)
– The HTTP Accept header is set to text/html

• Otherwise, it will attempt to send the request to the proxy
– The proxy response is returned

• If the resource is not found, it will serve the default html page

• Browsers use text/html only when expecting HTML content (e.g., first page)
• Best practice: avoid conflicting paths in URLs, if the path is found in React folders,

it is served, otherwise it is passed to the proxy
– Use unique path prefix for REST requests, e.g., /api

Applicazioni Web I - Web Applications I - 2019/2020

32

Use in production mode

• The approach may be useful in production mode if the REST API server
should not / cannot be accessed directly from the Internet

– For instance, application server with private IPs or other network/security
configuration reasons

• The main web server (Apache, nginx, etc.) should be able to determine
which requests must be redirected to the other web server

– For instance, depending on URLs (e.g., /api/… requests)

Applicazioni Web I - Web Applications I - 2019/2020

nginx web server
location /api/ {

proxy_pass http://backend-server;
}

Apache web server

ProxyPass /api/ http://backend-server

33

Common errors

• You are still running two web servers, on different ports

– Remember to start the REST API server before launching the React application

– May automate it by tweaking the startup scripts in package.json

• CORS is not needed

– Remove it from the Express server

– The API server is more secure, it will be accessed by React, only

• Production will be different

– Need to configure the “real” proxy in production in order to be compatible with
the same application path and API prefix

Applicazioni Web I - Web Applications I - 2019/2020

34

Common errors

• You are still running two web servers, on different ports

– Remember to start the REST API server before launching the React application

– May automate it by tweaking the startup scripts in package.json

• CORS is not needed

– Remove it from the Express server

– The API server is more secure, it will be accessed by React, only

• Production will be different

– Need to configure the “real” proxy in production in order to be compatible with
the same application path and API prefix

Applicazioni Web I - Web Applications I - 2019/2020

Examples:
• https://www.freecodecamp.org/news/how-to-make-

create-react-app-work-with-a-node-backend-api-
7c5c48acb1b0/

• https://www.newline.co/fullstack-react/articles/using-
create-react-app-with-a-server/

https://www.freecodecamp.org/news/how-to-make-create-react-app-work-with-a-node-backend-api-7c5c48acb1b0/
https://www.newline.co/fullstack-react/articles/using-create-react-app-with-a-server/

35

DEPLOYING A BUILD INSIDE A SERVER
Packing and moving the React application into any web server

Applicazioni Web I - Web Applications I - 2019/2020

https://create-react-
app.dev/docs/deployment/#static-server

Full Stack React, Chapter “Using Webpack with
Create React App / Creating a production build”

https://create-react-app.dev/docs/deployment/#static-server

36

Deploying the React Bundle

• React does not need to run in the
Development Server

• npm run build will create a
“production bundle” with all the
contents needed to run the
application

• This bundle is composed of static
files (html, js, assets) and may be
served by any webserver (including

Apache, nginx, php, …)

Applicazioni Web I - Web Applications I - 2019/2020

37

Build command

Applicazioni Web I - Web Applications I - 2019/2020

npm run build

Creates everything
under ./build

Publish from / or from
‘homepage’ property

https://create-react-
app.dev/docs/deployment/

https://create-react-app.dev/docs/deployment/

38

What does “build” do?

• Most of the work in “building” the static application is done by Babel
and Webpack

– Babel translates all JSX (and new JS syntax) into basic JS (according to the
‘production’ property in package.json)

– Webpack packs and minimizes all JS code into a single file

– Prepares an index.html that loads all the JS code

• The content of the “build” folder is self-contained and may be moved to
the deployment server

• All debugging capabilities are removed

Applicazioni Web I - Web Applications I - 2019/2020

39

Hosting the build in Express

• cd express-api-server

• cp –r/react-app/build .

• Define a static route in server.js

• In the application, you may call APIs locally

– fetch('/api/courses')...

Applicazioni Web I - Web Applications I - 2019/2020

app.use(express.static('./build'));

app.get('/', (req,res)=> {res.redirect('/index.html')});

40

Pros and Cons

• Simple to deploy the final application (anywhere)

• May include the application inside the API server (in production, too)

• The JS code runs on every browser (thanks to polyfills and transpiling)

• The build cannot be directly modified

• Need a save/build/copy/reload cycle for every modification

Applicazioni Web I - Web Applications I - 2019/2020

41

Other “magic” by Webpack

• Packing of all imported modules

• Bundling of Assets

– Images

– CSS files

• CSS Modules

Applicazioni Web I - Web Applications I - 2019/2020

42

In development mode

• npm start runs the “Webpack development server” (WDS)

• All our code is transpiled and packed into a bundle.js that is
automatically inserted into index.html

– Contains all our code, plus React, plus imported modules

– Also handles imports of non-JS files

• bundle.js does not exist – it’s kept in-memory by the WDS

• Sets up hot-reloading and synchronized error messages (via websockets)

Applicazioni Web I - Web Applications I - 2019/2020

43

Imports in Webpack

• import logo from './logo.svg';

• import logo from './logo.png';
– Will include the image reference inside the bundle (placed under static/media)

– Small files are rendered inline

• import './Button.css’;
– This component will use these CSS declarations

– All CSS will be concatenated into a single file, but here we are stating the dependency

• import styles from './Button.module.css’;
– Files ending with .module.css are CSS modules

– Styles may be applied with className={styles.primary}

– Class names are renamed to be unique: no conflict with other Components’ styles

Applicazioni Web I - Web Applications I - 2019/2020

https://create-react-app.dev/docs/adding-a-stylesheet
https://create-react-app.dev/docs/adding-a-css-modules-stylesheet
https://create-react-app.dev/docs/adding-images-fonts-and-files

https://create-react-app.dev/docs/adding-a-stylesheet
https://create-react-app.dev/docs/adding-a-css-modules-stylesheet
https://create-react-app.dev/docs/adding-images-fonts-and-files

44

Why use imports

• Scripts and stylesheets get minified and bundled together to avoid extra
network requests.

• Missing files cause compilation errors instead of 404 errors for your
users.

• Result filenames include content hashes so you don’t need to worry
about browsers caching their old versions.

• They are an optional mechanism. “Traditional” loading (with link, img)
still works, if you save your files in the public directory

Applicazioni Web I - Web Applications I - 2019/2020

https://create-react-app.dev/docs/using-the-public-folder

https://create-react-app.dev/docs/using-the-public-folder

45

References

• Taming the State in React, Robin Wieruch (2017)
http://leanpub.com/taming-the-state-in-react

• The Road to learn React, Robin Wieruch (2019)
http://leanpub.com/the-road-to-learn-react

Applicazioni Web I - Web Applications I - 2019/2020

http://leanpub.com/taming-the-state-in-react
http://leanpub.com/the-road-to-learn-react

46

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2019/2020

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

