
Components,
Elements, JSX
The Foundations of React

Enrico Masala

Fulvio Corno

Luigi De Russis

Applicazioni Web I - Web Applications I - 2019/2020

2

Outline

• React Elements
– Creating

– JSX language

• React Components
– Defining

– Props and State

– Lifecycle

• React design process
– Top-down information flow

– Defining state

– Adding Reverse flow

Applicazioni Web I - Web Applications I - 2019/2020

Part 1

Part 2

3

Conceptual Overview

Applicazioni Web I - Web Applications I - 2019/2020

reactDOM.render(element, targetNode) ;

React.createElement(type, props,
children)

<type props=…>children</type>
Elementreturns

renders

Class X extends React.Component {
render() {
return <ElementTree>;

}}

defines

<div>

predefined

include
uses

Component

https://reactjs.org/docs/react-component.html

Element
Treereturns

composed

https://reactjs.org/docs/react-component.html

4

REACT ELEMENTS
Building block for describing web page content

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/blog/2015/12/18/react-
components-elements-and-instances.html

Full Stack React, Chapter “JSX and the Virtual
DOM”

https://reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html

5

React Element

• An element is a plain object describing a component instance or DOM node
and its desired properties

• A ReactElement is a representation of a DOM element in the Virtual DOM.

• It contains only information about

– the component type (for example, a Button)

– its properties (for example, its color)

– any child elements inside it.

• Not an instance of a part of a page, but a description about how to construct
it.

• Elements offer no callable methods.

Applicazioni Web I - Web Applications I - 2019/2020

6

React.createElement (1/3)

• React.createElement(type, props, children)

• Type

– String: a DOM node identified by the tag name (e.g., 'div')

– React component class/function: a user-defined component

Applicazioni Web I - Web Applications I - 2019/2020

7

React.createElement (2/3)

• React.createElement(type, props, children)

• Props: a simple object {}, containing:

– DOM attributes for DOM nodes (type, src, href, alt, …)

– Arbitrary values for React components (even array- or object-valued)
• Available as this.props in the Component body

– Represented as object properties (not strings like HTML attributes)
• Exceptions (reserved words): class → className, for → htmlFor

Applicazioni Web I - Web Applications I - 2019/2020

8

React.createElement (3/3)

• React.createElement(type, props, children)

• Children:

– a ReactNode object, that may be:
• A string or number: text content of the nodes

• A ReactElement (that may contain a tree of Elements)

• An array of ReactNodes

– nested Elements to be rendered as children of the element

Applicazioni Web I - Web Applications I - 2019/2020

9

Element Objects

Element with DOM nodes

{

type: 'button',

props: {

className: 'button button-blue',

children: {

type: 'b',

props: {

children: 'OK!'

}

}

}

}

Elements with React Component

{

type: Button,

props: {

color: 'blue',

children: 'OK!'

}

}

Applicazioni Web I - Web Applications I - 2019/2020

Note: we don’t create elements as plain
objects. We always use createElement or JSX

10

Rendering Element objects

Element with DOM nodes

{

type: 'button',

props: {

className: 'button button-blue',

children: {

type: 'b',

props: {

children: 'OK!'

}

}

}

}

Elements with React Component

{

type: Button,

props: {

color: 'blue',

children: 'OK!'

}

}

Applicazioni Web I - Web Applications I - 2019/2020

<button class='button
button-blue'>

OK!

</button>

11

Rendering Element objects

Element with DOM nodes

{

type: 'button',

props: {

className: 'button button-blue',

children: {

type: 'b',

props: {

children: 'OK!'

}

}

}

}

Elements with React Component

{

type: Button,

props: {

color: 'blue',

children: 'OK!'

}

}

Applicazioni Web I - Web Applications I - 2019/2020

🎄 Components encapsulate element trees
(generated given their properties).

📷 React asks the Button component to
render itself. It will generate a tree of
elements, to replace this one.

↻ Repeat until only DOM nodes are
present.

{
type: 'button',
props: {
className: 'button

button-blue',
children: {
type: 'b',
props: {
children: 'OK!'

}
}

}
}

12

Conventions

• DOM Elements are always lowercase

– div p li img …

• React Components are always uppercase

– WarningButton LoginForm TaskList …

• The two types of elements can be mixed, nested, combined in any way

– React uses composition and not inheritance

• Element trees describe portions of the Virtual DOM

Applicazioni Web I - Web Applications I - 2019/2020

13

JSX
A humane way of describing trees of ReactElements

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/jsx-in-depth.html

Full Stack React, Chapter “JSX and the Virtual
DOM”

React Handbook, Chapter “JSX”

https://reactjs.org/docs/jsx-in-depth.html

14

JSX – JavaScript Syntax Extension

• Alternative syntax for React.createElement

• XML fragments inside the JS code

– Syntax details: all tags must be </closed> or <selfclosing/>

• Transpiled by Babel into plain JS

Applicazioni Web I - Web Applications I - 2019/2020

<MyButton color="blue" shadowSize={2}>

Click Me

</MyButton>

React.createElement(

MyButton,

{color: 'blue', shadowSize: 2},

'Click Me’

) ;

Element/Component name
Props
Children / Text content

15

JSX Syntax

• May use <tag>…</tag> or <tag/> anywhere a JS expression is
syntactically valid

– Not only in Components

– May also store in Arrays/Objects

– After all, they are just ReactElements generated by React.createElement!

• May enclose in (…) for clarity

Applicazioni Web I - Web Applications I - 2019/2020

const element = <div className="main">Hello world</div>;

const element2 = (<Message text="Hello world" />);

Note: use <tag/> if the
component doesn’t have

any children

16

JSX Tag Name

• <Foo> is just React.createElement(Foo,…)

– Foo must be in scope (imported or declared)

– React must be in scope (even if it’s not visible in the code)

Applicazioni Web I - Web Applications I - 2019/2020

import React from 'react';
import CustomButton from './CustomButton';

function WarningButton() {
return <CustomButton color="red" />;

}

17

Computed Tag Name

• The JSX Tag must be a valid identifier, can’t be an expression

• If you want to select a component based on an expression, first assign it
to a capitalized variable.

Applicazioni Web I - Web Applications I - 2019/2020

function WarningButton(props) {

if(props.urgent)

return <UrgentButton />;

else

return <NormalButton />;

}

function WarningButton(props) {

const ThisButton = props.urgent ?

UrgentButton : NormalButton ;

return <ThisButton/>;

}

18

JSX Attribute Expressions

• Tag attributes are converted to props of the ReactElement

• String attributes become string-valued props

– color="blue" -> {color: 'blue'}

• Other objects may be specified as a JS expression, enclosed in {}

– shadowSize={2} -> {shadowSize: 2}

– log={true}

– color={warningLevel === 'debug' ? 'gray' : 'red'}

• Any JS expression is accepted

Applicazioni Web I - Web Applications I - 2019/2020

19

JSX Children

• The content between the tags <tag>content</tag> is passed as a special
property props.children

• Such content may be:
– A string literal

– More JSX elements (nested components)

– Any {JS expression}

– A {JS expression} returning an array of JSX elements (they are inserted as siblings)

– A JS function (may be used as a callback by the Component)

– Anything that the Component may understand (and render properly)

Applicazioni Web I - Web Applications I - 2019/2020

<MyContainer>

<MyFirstComponent />

<MySecondComponent />

</MyContainer>

<MyComponent>Hello
world!</MyComponent>

20

JSX Child Expressions

• JS expressions in {} may be used to specify element children

• One child (or an array of children) are generated by an expression

– <JSX> inside {JS} inside <JSX> inside JS. Totally Legit.

• undefined, null or Booleans (true, false) are not rendered

– Useful for conditionally including children

Applicazioni Web I - Web Applications I - 2019/2020

const Menu = ({loggedInUser ? <UserMenu /> : <LoginLink />})

return (

Menu

{userLevel === 'admin' && renderAdminMenu()}

)

21

Boolean HTML Attributes in JSX

• In HTML some attributes do not have a value. Their simple presence
“activates” a behavior

– HTML: <option value='WA' selected>Washington</option>

– HTML: <input name='Name' disabled />

• In JSX, a Boolean value must be given

– True, for the presence of the attribute

– False (or nothing) for the absence of the attribute

– JSX: <option value='WA' selected={true}>Washington</option>

– JSX : <input name='Name' disabled={true} />

Applicazioni Web I - Web Applications I - 2019/2020

22

Comments in JSX

• There are no comments in JSX

• The HTML/XML comments syntax <!-- … --> does not work

• If you want to insert comments, you must do that in an embedded JS
expression (using JS syntax inside {})

{/* … */}

• Yes, it’s ugly

Applicazioni Web I - Web Applications I - 2019/2020

23

DOM attribute names

• When passing props to a DOM native node, some differences exist

• Attribute names are camelCase

– HTML onchange→ JSX onChange

• The style attribute accepts an object and not a string

– <div style={{color: 'white'}}>Hello World!</div>

– Object keys are CSS Properties, and are camelCase (e.g., margin-top→
marginTop)

– Object values are CSS values, represented as strings

Applicazioni Web I - Web Applications I - 2019/2020

24

JSX Spread Syntax

• Shortcut syntax for passing all properties of an object as props to a React
Component

Applicazioni Web I - Web Applications I - 2019/2020

const welcome = {msg: "Hello", recipient:
"World"} ;

<Component

msg={welcome.msg}

recipient={welcome.recipient} />

const welcome = {msg: "Hello", recipient:
"World"} ;

<Component {...welcome} />

// properties of the welcome object

// are “spread” as individual props

// with the same name

25

JSX Spread example (property passthrough)

const Button = props => {
const { kind, ...other } = props;
const className = kind === "A" ? "ABtn" : "BBtn";
return <button className={className} {...other} />;

};

const App = () => {
return (
<div>
<Button kind="primary"
onClick={() => console.log("clicked!")}>
Hello World!

</Button>
</div>

);
};

Applicazioni Web I - Web Applications I - 2019/2020

• The ‘kind’ property is
“consumed” by <Button>

• All other properties
(…other) are passed to the
child <button>

• In this way, <App> can
specify the kind to Button
and all other properties to
“pass through” down the
hierarchy

26

JSX Syntax Reminders

• The HTML class attribute is called className

• The HTML for attribute is called htmlFor

• HTML entities (< & © ☆ etc…) are not supported in JSX

– Use the corresponding Unicode character (< & ©☆) inside a string in JS {'☆'}

– Alternatively, use a Unicode Escape sequence: {'\u2606'}
• See: https://www.toptal.com/designers/htmlarrows/

Applicazioni Web I - Web Applications I - 2019/2020

https://www.toptal.com/designers/htmlarrows/

27

Data properties in DOM nodes

• React Components accepy any property name you need

– <Message level='urgent' code={123}/>

• DOM nodes have a predefined set of properties

– <button value='Press me' urgency='high'>…</button>

• You may add new “custom” properties by prefixing their name with
‘data-’

– <button value='Press me' data-urgency='high'>…</button>

Applicazioni Web I - Web Applications I - 2019/2020

28

REACT COMPONENTS
Putting together the building blocks

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/components-and-
props.html

https://reactjs.org/docs/react-component.html

https://reactjs.org/blog/2015/12/18/react-
components-elements-and-instances.html

Full Stack React, Chapter “Advanced Component
Configuration with props, state, and children”

https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html

29

Declaring components

Components as functions

const Button = (props) => (

React.createElement(. . .)

-or-

<Element>...</Element>

);

Components as classes

class Button extends React.Component {

render() {

// receives this.props;

return

React.createElement(. . .) ;

-or-

<Element>...</Element> ;

}

}

Applicazioni Web I - Web Applications I - 2019/2020

Components:
Take props as their input

Return the elements as their output

30

Comparison

Components as functions

• Defined as function expressions or
arrow expressions

• Receive (props) argument
• Must return a React Element tree
• The returned elements are function

of the props
• Must be a pure function (no side-

effects) and idempotent
• State and lifecycle may be managed

with the recent Hooks, mechanism

Components as classes

• Must implement the render()
method
– Will return the React Element tree

(same as function)

• Props are available as instance
properties (this.props)

• May define other instance methods
• Local state may be defined
• Additional lifecycle events may be

handled with custom logic

Applicazioni Web I - Web Applications I - 2019/2020

31

Top-Down Reconciliation

1. ReactDOM.render() or setState() is called for an element E

2. E() or E.render() is called, with the specified props, to obtain its
representation as an Element tree ET (whose elements receive their
props, as computed by E)

3. For each non-native element in ET, repeat steps 2-3 recursively

4. Stop when only native DOM elements are present in ET

5. The resulting ET is compared with the existing ET in the V-DOM, using
an approximated O(N) algorithm (https://reactjs.org/docs/reconciliation.html)

6. The differences are propagated to the browser’s DOM

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/reconciliation.html

32

Tips for Creating Components

• It’s normal to create many different “small” components

• Each component is constructed by composing other components

– Components may be repeated (with different props)

– It’s up to the parent to determine the children’s props

• If a component becomes too complex, try to extract small re-usable
parts as independent components

Applicazioni Web I - Web Applications I - 2019/2020

33

Lists and Keys (1/2)

function NumberList(props) {
const numbers = props.numbers;
const listItems = numbers.map(
(number) => {number});

return ({listItems});
}

const numbers = [1, 2, 3, 4, 5];
ReactDOM.render(
<NumberList numbers={numbers} />,
document.getElementById('root')

);

• The NumberList component
generates a containing
for each of the numbers in its
props.numbers

• Whenever you construct a list of
elements, you should pass a unique
key attribute to identify each item

• Unique keys help React identify
which items have changed, are
added, or are removed. They are
used in the Reconciliation algorithm
heuristics

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/lists-and-keys.html

https://reactjs.org/docs/lists-and-keys.html

34

Lists and Keys (2/2)

• Assign to each item in the list a special ‘key’ attribute, with unique values

– <li key={number.toString()}>{number}

• Most likely, we may reuse unique IDs from the data itself

– <li key={todo.id}>{todo.text}

• Keys must be specified when building the array of components

– Usually in the .map() call, in the ‘container’ component

– Not needed within the component of the items

• Uniqueness is only required within the same list

– Not globally on the page

• Keys are not available as props in the component

Applicazioni Web I - Web Applications I - 2019/2020

35

React Fragments

• render() should always return a tree of elements, with a single root.

• To return a list of elements, you must include them in some “container”
(such a <div>)

– This generates an “extra” DOM node, and in some contexts it might be invalid

• The special node <React.Fragment> may be used to wrap a list of
element into a single root.

– React.Fragment will not generate any node at the DOM level

• A shortcut syntax for fragments is <>…</>

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/fragments.html

https://reactjs.org/docs/fragments.html

36

COMPONENTS: PROPS AND STATE

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/react-component.html

Full Stack React, Chapter “Advanced Component
Configuration with props, state, and children”

React Handbook, Chapters “Props” and “State”

https://reactjs.org/docs/react-component.html

37

Props, state, context

Applicazioni Web I - Web Applications I - 2019/2020

React component

props

context

state

element tree

Child
component

Child
component

Child
component

props
props

props

38

Props, State, Context

• Props are immutable pieces of data that are passed into child
components from parents

• State is where a component holds data, locally.

– When state changes, usually the component needs to be re-rendered

– State is private to the component and is mutable by component methods

• Context is a sort of “global” and “implicit” props, that are automatically
passed to all components

Applicazioni Web I - Web Applications I - 2019/2020

39

Passing props

• In JSX, every attribute is converted to a prop

– <Header headerText='Hello'/>

– this.props.headerText -> string "hello"

• This.props collects all passed props

– They are all read-only

• May be any JS object, or other React elements

– <UserError level={3}/>

– <ResultsTable displayData={latestResults}/>

Applicazioni Web I - Web Applications I - 2019/2020

40

PropTypes

• An *optional* mechanism for declaring the data types of props, that will
be checked at run-time

– npm install prop-types

• Create a static property propTypes in our component class

– Maps every property name to a “type validator”

– Validators check the props at run-time, only in development mode

– Validation errors are shown in the JS console

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/typechecking-with-proptypes.html

https://reactjs.org/docs/typechecking-with-proptypes.html

41

PropTypes Example

import PropTypes from 'prop-types';

class Greeting extends React.Component
{

render() {

return (

<h1>Hello, {this.props.name}</h1>

);

}

}

Greeting.propTypes = {

name: PropTypes.string

};

Applicazioni Web I - Web Applications I - 2019/2020

import PropTypes from 'prop-types';

class Greeting extends React.Component
{

render() {

return (

<h1>Hello, {this.props.name}</h1>

);

}

static propTypes = {

name: PropTypes.string

};

}

42

PropTypes validators

• Optional props of pre-defined types

– PropTypes.array

• PropTypes.arrayOf(PropTypes.nu
mber)

– PropTypes.bool

– PropTypes.funct

– PropTypes.number

– PropTypes.object

• PropTypes.objectOf(PropTypes.n
umber)

• PropTypes.shape({…})

– PropTypes.string

• Rendering content

– PropTypes.node: anything that can
be rendered

– PropTypes.element: any
ReactElement

– PropTypes.MyComponent

• Make a property required

– PropTypes.type.isRequired

– PropTypes.any.isRequired

Applicazioni Web I - Web Applications I - 2019/2020

43

Default Props Values

• We may specify default values

– In case of missing properties

• Static property ‘defaultProps’

• If a prop is passed, the default is
ignored

• Validation happens after default
values are applied

class Counter extends React.Component {

static defaultProps = {

initialValue: 1

};

// ...

};

<Counter />

...equivalent to:

<Counter initialValue={1} />

Applicazioni Web I - Web Applications I - 2019/2020

44

State

• An object containing local data, private to a component, that may be
mutated by the component itself

• To define state, simply assign an object to this.state in the class
constructor

– You need to define the component with the class syntax

– You need to declare a constructor

Applicazioni Web I - Web Applications I - 2019/2020

45

State example

class WelcomeButton extends
React.Component {

constructor(props) {

super(props);

this.state = { english: true };

}

render() {

return <button>

{this.state.english ?

'Hello' : 'Ciao'}

</button>

}

}

• The constructor receives props and
should call super(props)

• Assign to this.state the initial
version of an object describing the
component state

• Inside the component, you may
refer to this.state to customize
the result according to current state

• Never n-e-v-e-r modify
this.state directly

Applicazioni Web I - Web Applications I - 2019/2020

46

State modifications

• setState(updater,
[callback])

• All modifications to the state
must be requested through
setState()

• setState will apply the
modification asynchronously (not
immediately)
– The callback will be executed after

modification has been applied

• Updater as an object: it performs
a shallow merge of the object’s
properties into the new state
– this.setState({num: 2});

• Updater as a function
– (state, props) =>
updated_state

– Must return a new state object with
the properties you want to modify

– Must not mutate the passed-in
state

Applicazioni Web I - Web Applications I - 2019/2020

Merge: modifies (or adds) properties that
you specify, leaves the others unchanged

Shallow: not recursive over nested objects

https://reactjs.org/docs/react-component.html#setstate

https://reactjs.org/docs/react-component.html#setstate

47

Calling setState()

• State changes are usually
determined by asynchronous
events
– DOM event handlers

– Server responses (e.g., REST API
calls)

• The event handler is a function
that in turn calls setState

handleClick = () => {

this.setState(

{english: !this.state.english}

);

};

render() {

return <button

onClick={this.handleClick}>

{this.state.english ?

'Hello' : 'Ciao'}

</button>

}

Applicazioni Web I - Web Applications I - 2019/2020

48

Beware ‘this’: bind your functions

Applicazioni Web I - Web Applications I - 2019/2020

handleClick = () => {

this.setState(

{english: !this.state.english}

);

};

constructor(props) {

super(props);

this.state = { english: true };

this.handleClick =

this.handleClick.bind(this);

}

handleClick() {

this.setState(

{english: !this.state.english}

);

}

• When using class methods or
function expressions, always bind
the function in the constructor, or
‘this.state’ will fail

• When using arrow functions, it
works because this is inherited from
the class context

49

Function or Object in setState?

• If the logic for computing the next state depends on the current state,
always use a function

• setState({ counter: this.state.counter+1})
– this.state.counter is evaluated when setState is called

– The new state will be assigned later, asynchronously

– In case many asynchronous requests are made, some update may rely on out-of-
date information

• setState((state,props)=>({counter:state.counter+1}))
– state.counter will be evaluated when the async call is made: guaranteed to

have the latest value

Applicazioni Web I - Web Applications I - 2019/2020

https://medium.com/@wisecobbler/using-a-function-in-
setstate-instead-of-an-object-1f5cfd6e55d1

https://medium.com/@wisecobbler/using-a-function-in-setstate-instead-of-an-object-1f5cfd6e55d1

50

Can children mutate parent’s state?

• Each button may be selected or
not, but only one may be
selected at a time

• The information about what
button is selected may not be in
the button

• It is a state of a container
component for “button group”

Applicazioni Web I - Web Applications I - 2019/2020

51

Analysis

Applicazioni Web I - Web Applications I - 2019/2020

App

ButtonGroup

SimpleButton

button

SimpleButton

button

SimpleButton

button

…

…

props.names=['Chess', 'Poker', 'Black Jack', 'Go']

state.chosen
props.name='Poker’
props.index=1
props.selected=false

<button> attributes
Bootstrap classes

52

How to change the chosen button?

• Handle onClick event from the button

• ButtonGroup must offer a method for changing the chosen option

– Will call setState()

• The method reference must be passed down to SimpleButton, with all
other props

Applicazioni Web I - Web Applications I - 2019/2020

53

Solution

Applicazioni Web I - Web Applications I - 2019/2020

App

ButtonGroup

SimpleButton

button

SimpleButton

button

SimpleButton

button

…

…

props.names=['Chess', 'Poker', 'Black Jack', 'Go']

state.chosen props.name='Poker’
props.index=1
props.selected=false
props.changeSelected=this.changeSelected

<button> attributes
Bootstrap classes
onClick={()=>props.changeSelected(props.index)}

changeSelected = (id)=>{
this.setState(
{chosen: id});

}

54

React Design Hints

• Try to implement stateless components instead of stateful ones

– Stateless components are more reusable

– Stateless components are faster to execute

– Stateless components may be declared as a simple function

• Move state to common ancestors (“state lifting”)

• Pass state down to the children using props

• Allow children to ask for state updates, by passing down callback
functions

Applicazioni Web I - Web Applications I - 2019/2020

55

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2019/2020

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

