
Asynchronous
Programming in JS
“The” language of the Web

Enrico Masala

Fulvio Corno

Luigi De Russis

Applicazioni Web I - Web Applications I - 2019/2020

2

ASYNCHRONOUS PROGRAMMING
JavaScript – The language of the Web

Applicazioni Web I - Web Applications I - 2019/2020

JavaScript: The Definitive Guide, 7th Edition
Chapter 11. Asynchronous JavaScript

Mozilla Developer Network
• Learn web development JavaScript » Dynamic client-side

scripting » Asynchronous JavaScript
• Web technology for developers » JavaScript » Concurrency

model and the event loop
• Web technology for developers » JavaScript » JavaScript

Guide » Using Promises

3

Asyncronicity

• JavaScript is single-threaded and inherently synchronous
– i.e., code cannot create threads and run in parallel in the JS engine

• Callbacks are the most fundamental way for writing asynchronous JS
code

• How can they work asynchronously?
– e.g., how can setTimeout() or

other async callbacks work?

• Thanks to the Execution Environment
– e.g., browsers and Node.js

• and the Event Loop

Applicazioni Web I - Web Applications I - 2019/2020

const deleteAfterTimeout = (task) =>
{

// do something

}

// runs after 2 seconds

setTimeout(deleteAfterTimeout, 2000,
task)

4

Non-Blocking Code!

• Asynchronous techniques are very useful, particularly for web development
• For instance: when a web app runs executes an intensive chunk of code

without returning control to the browser, the browser can appear to be frozen
– this is called blocking, and it should be the exception!

• the browser is blocked from continuing to handle user input and perform other tasks until the web
app returns control of the processor

• This may happen outside browsers, as well
– e.g., reading a long file from the disk/network, accessing a database and returning data,

accessing a video stream from a web cam, etc.

• Most of the JS execution environments are, therefore, deeply asynchronous
– with non-blocking primitives
– JavaScript programs are event-driven, typically

Applicazioni Web I - Web Applications I - 2019/2020

5

Back to Callbacks

• The most fundamental way for writing asynchronous JS code

• Great for "simple" things!

Applicazioni Web I - Web Applications I - 2019/2020

const readline = require('readline');

const rl = readline.createInterface({
input: process.stdin,
output: process.stdout

});

rl.question('Task description: ', (answer) => {
let description = answer;

rl.close();
});

6

Handling Errors in Callbacks

• No “official” ways, only best practices!

• Typically, the first parameter of the callback function is for storing any
error, while the second one is for the result of the operation

– this is the strategy adopted by Node.js, for instance

Applicazioni Web I - Web Applications I - 2019/2020

fs.readFile('/file.json', (err, data) => {

if (err !== null) {

console.log(err);

return;

}

//no errors, process data

console.log(data);

});

7

Beware: Callback Hell!

• If you want to perform multiple
asynchronous actions in a row using
callbacks, you must keep passing
new functions to handle the
continuation of the computation
after the previous action

– every callback adds a level of nesting

– when you have lots of callbacks, the
code starts to be complicated very
quickly

Applicazioni Web I - Web Applications I - 2019/2020

const readline = require('readline');
const rl = readline.createInterface(...);

rl.question('Task description: ', (answer) => {
let description = answer;

rl.question('Is the task important? (y/n)', (answer) => {
let important = answer;

rl.question('Is the task private? (y/n)', (answer) => {
let private = answer;

rl.question('Task deadline: ', (answer) => {
let date = answer;
...

}
}

}

rl.close();

});

8

Callback Hell

window.addEventListener('load', () => {

document.getElementById('button').addEventListener('click', () => {

setTimeout(() => {

items.forEach(item => {

//your code here

})

}, 2000);

})

})

Applicazioni Web I - Web Applications I - 2019/2020

9

Promises

• A core language feature to simplify asynchronous programming

– a possible solution to callback hell, too!

– a fundamental building block for "newer" functions (async, ES2017)

• It is an object representing the eventual completion (or failure) of an
asynchronous operation

– i.e., an asynchronous function returns a promise to supply the value at some
point in the future, instead of returning immediately a final value

• Promises standardize a way to handle errors and provide a way for errors
to propagate correctly through a chain of promises

Applicazioni Web I - Web Applications I - 2019/2020

10

Promises

• Promises can be created or
consumed
– many Web APIs expose Promises to be consumed!

• When consumed:
– a Promise starts in a pending state

• the caller function continues the
execution, while it waits for the
Promise to do its own processing, and
give the caller function some
“responses”

– then, the caller function waits for it
to either return the promise in a
fulfilled state or in a rejected state

let duration = 10;

const waitPromise = new Promise((resolve, reject)
=> {
if (duration >= 0) {
// the promise can be fulfilled!
resolve("It works!");

} else {
// time travel? we reject the promise
reject(new Error("It doesn't work."));

}
});

waitPromise.then((result) => {
console.log("Success: ", result);

}).catch((error) => {
console.log("Error: ", error);

});

Applicazioni Web I - Web Applications I - 2019/2020

11

Creating a Promise

• A Promise object is created using
the new keyword and its
constructor

• The constructor takes an executor
function, as its parameter

• This function takes two functions as
parameters:
– resolve, called when the

asynchronous task completes
successfully and returns the results of
the task as a value

– reject, called when the task fails and
returns the reason for failure (an error
object, typically)

const myPromise = new Promise((resolve,
reject) => {

// do something asynchronous which
eventually call either:

resolve(someValue); // fulfilled

// or

reject("failure reason"); // rejected

});

Applicazioni Web I - Web Applications I - 2019/2020

12

Creating a Promise

• You can also provide a function
with “promise functionality”

• Simply have it return a promise!

function wait(duration) {

// Create and return a new promise

return new Promise((resolve, reject) => {

// If the argument is invalid, reject the
promise

if (duration < 0) {

reject(new Error('Time travel not yet
implemented'));

}

// otherwise, wait asynchronously and then resolve the
Promise

// setTimeout will invoke resolve() with no arguments:

// the Promise will fulfill with the undefined value

setTimeout(resolve, duration);

});

}

Applicazioni Web I - Web Applications I - 2019/2020

13

Consuming a Promise

• When a Promise is fulfilled, the
then() callback is used

• If a Promise is rejected, instead, the
catch() callback will handle the
error

• then() and catch() are instance
methods defined by the Promise
object
– each function registered with then() is

invoked only once

• You can omit catch(), if you are
interested in the result, only

waitPromise.then((result) => {

console.log("Success: ", result);

}).catch((error) => {

console.log("Error: ", error);

});

// if a function returns a Promise...

wait(1000).then(() => {

console.log("Success!");

}).catch((error) => {

console.log("Error: ", error);

});

Applicazioni Web I - Web Applications I - 2019/2020

14

Consuming a promise

• p.then(onFulfilled[, onRejected]);

– Callbacks are executed asynchronously (inserted in the event loop) when the promise
is either fulfilled (success) or rejected (optional)

• p.catch(onRejected);

– Callback is executed asynchronously (inserted in the event loop) when the promise is
rejected

• p.finally(onFinally);

– Callback is executed in any case, when the promise is either fulfilled or rejected.

– Useful to avoid code duplication in then and catch handlers

• All these methods return Promises, too!

Applicazioni Web I - Web Applications I - 2019/2020

15

Chaining Promises

• One of the most important benefits
of Promises

• They provide a natural way to
express a sequence of
asynchronous operations as a linear
chain of then() invocations
– without having to nest each operation

within the callback of the previous one
• the "callback hell" seen before

• Important: Always return results,
otherwise callbacks won’t get the
result of a previous promise

getRepoInfo()

.then(repo => getIssue(repo))

.then(issue => getOwner(issue.ownerId))

.then(owner => sendEmail(owner.email,
'Some text'))

.catch(e => {

// just log the error

console.error(e)
.finally(_ => logAction());

});

Applicazioni Web I - Web Applications I - 2019/2020

16

Example Chaining

• Useful, for instance, with I/O API such as fetch(), which returns a Promise

Applicazioni Web I - Web Applications I - 2019/2020

const status = (response) => {
if (response.status >= 200 && response.status < 300) {
return Promise.resolve(response) // static method to return a fulfilled Promise

}
return Promise.reject(new Error(response.statusText))

}
const json = (response) => response.json()

fetch('/todos.json')
.then(status)
.then(json)
.then((data) => { console.log('Request succeeded with JSON response', data) })
.catch((error) => { console.log('Request failed', error) })

17

Promises… in Parallel

• What if we want to execute several asynchronous operations in parallel?
• Promise.all()

– takes an array of Promise objects as its input and returns a Promise
– the returned Promise will be rejected if at least one of the input Promises is rejected
– otherwise, it will be fulfilled with an array of the fulfillment values for each of the input

promises
– the input array can contain non-Promise values, too: if an element of the array is not a

Promise, it is simply copied unchanged into the output array

• Promise.race()
– returns a Promise that is fulfilled or rejected when the first of the Promises in the input

array is fulfilled or rejected
– if there are any non-Promise values in the input array, it simply returns the first of those

Applicazioni Web I - Web Applications I - 2019/2020

Promise.all(promises)

.then(results => console.log(results);

})

.catch(e => console.error(e));

18

Simplyfing writing with async / await

• ECMAScript 2017 (ES8) introduces two new keywords async await

– write promise-based asynchronous code that looks like synchronous code

• Prepend async keyword to any function means that it will return a promise

• Prepend await when calling an async function (or a function returning a
Promise) makes the calling code stop until the promise is resolved or
rejected
const sampleFunction = async () => {

return 'test'

}

sampleFunction().then(console.log) // This will log 'test'

Applicazioni Web I - Web Applications I - 2019/2020

19

async functions

• The async function declaration defines an asynchronous function

– a function that is an AsyncFunction object

• Asynchronous functions operate in a separate order than the rest of the
code via the event loop, returning an implicit Promise as their result

– but the syntax and structure of code using async functions looks like standard
synchronous functions.

Applicazioni Web I - Web Applications I - 2019/2020

async function name([param[, param[, ...param]]]) {

statements }

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/async_function

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

20

await

• The await operator can be used to wait for a Promise. It can only be used inside
an async function

• await blocks the code execution within the async function until the Promise is
resolved

• When resumed, the value of the await expression is that of the fulfilled Promise

• If the Promise is rejected, the await expression throws the rejected value
– If the value of the expression following the await operator is not a Promise, it's converted

to a resolved Promise

Applicazioni Web I - Web Applications I - 2019/2020

returnValue = await expression;

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/await

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

21

Example: async / await

Applicazioni Web I - Web Applications I - 2019/2020

function resolveAfter2Seconds() {
return new Promise(resolve => {
setTimeout(() => {
resolve('resolved');

}, 2000);
});

}
async function asyncCall() {
console.log('calling');
const result = await resolveAfter2Seconds();
console.log(result);

}

asyncCall();

> "calling"
//... 2 seconds
> "resolved"

Looks like
sequential
code

Return a
promise

async is needed to use await

22

Example: async / await

Applicazioni Web I - Web Applications I - 2019/2020

function resolveAfter2Seconds() {
return new Promise(resolve => {
setTimeout(() => {

resolve('resolved');
}, 2000);

});
}
async function asyncCall() {
console.log('calling');
const result = await resolveAfter2Seconds();
return 'end';

}

asyncCall().then(console.log);

> "calling"
//... 2 seconds
> "end"

Can use Promise
methods

Implicitly returns a Promise

23

Examples… Before and After

const makeRequest = () => {

return getAPIData()

.then(data => {

console.log(data);

return "done";

}

);

}

let res = makeRequest();

const makeRequest = async () => {

console.log(await getAPIData());

return "done";

};

let res = makeRequest();

Applicazioni Web I - Web Applications I - 2019/2020

24

Examples… Before and After

function getData() {

return getIssue()

.then(issue =>

getOwner(issue.ownerId))

.then(owner =>

sendEmail(owner.email, 'Some text'));

}

// assuming that all the 3 functions

above return a Promise

async function getData = {

const issue = await getIssue();

const owner = await

getOwner(issue.ownerId);

await sendEmail(owner.email, 'Some

text');

}

Applicazioni Web I - Web Applications I - 2019/2020

25

Converting Promise-based Function to async/await
with Visual Studio Code

Applicazioni Web I - Web Applications I - 2019/2020

https://twitter.com/i/status/1045655069478334464

https://twitter.com/i/status/1045655069478334464
https://twitter.com/i/status/1045655069478334464

26

Chaining with async/await

• Simpler to read, easier to debug

– debugger would not stop on asynchronous code

Applicazioni Web I - Web Applications I - 2019/2020

const getFirstUserData = async () => {
const response = await fetch('/users.json’); // get users list
const users = await response.json(); // parse JSON
const user = users[0]; // pick first user
const userResponse = await fetch(`/users/${user.name}`); // get user data
const userData = await user.json(); // parse JSON
return userData;

}
getFirstUserData()

27

Promises or async/await? Both!

• If the output of function2 is dependent on the output of function1, use
await.

• If two functions can be run in parallel, create two different async functions
and then run them in parallel Promise.all(promisesArray)

• Instead of creating huge async functions with many await asyncFunction() in
it, it is better to create smaller async functions (not too much blocking code)

• If your code contains blocking code, it is better to make it an async function.
The callers can decide on the level of asynchronicity they want.

Applicazioni Web I - Web Applications I - 2019/2020

https://medium.com/better-programming/should-i-use-promises-or-
async-await-126ab5c98789

https://medium.com/better-programming/should-i-use-promises-or-async-await-126ab5c98789

28

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2019/2020

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

