
REST API
OVERVIEW

Design and of Web APIs using the REST paradigm.



Goal

• How to use REST architectures to integrate (call 
and/or offer) remote services

• How to design a consistent set of REST APIs

• How to implement REST APIs in python/Flask

4/22/2018 REST over HTTP 2



Summary

• REST (Representational State Transfer)

• Rest API Design Guidelines

• Implementing REST APIs in Python

4/22/2018 REST over HTTP 3



REST

REpresentational State Tranfer

4/22/2018 REST over HTTP 4



REST

• Representational 
State Transfer 

• A style of software architecture for distributed systems

• Platform-independent
– you don't care if the server is Unix, the client is a Mac, or 

anything else

• Language-independent
– C# can talk to Java, etc.

• Standards-based
– runs on top of HTTP

• Can easily be used in the presence of firewalls

4/22/2018 REST over HTTP 5



What is a Resource?

• A resource can be anything that has identity

– a document or image

– a service, e.g., "today's weather in New York"

– a collection of other resources

– non-networked objects (e.g., people)

• The resource is the conceptual mapping to an entity 
or set of entities, not necessarily the entity that 
corresponds to that mapping at any particular point 
in time!

4/22/2018 REST over HTTP 6



Main Principles

• Resource: source of specific information

• Mapping: Resources  URIs

• Client and server exchange representations of the 
resource

– the same resource may have different representations

– e.g., XML, JSON, HTML, RDF, …

• Operations on the Resource is done by means of 
HTTP methods

– GET, POST, PUT, DELETE

4/22/2018 REST over HTTP 7



Main Types of Resources

• Collection resource
– Represents a set (or list) of resources of the same type

– Format: /resource
• http://api.polito.it/students 

• http://api.polito.it/courses

• Element (Item, Simple) resource
– Represents a single item, and its properties

– Has some state and zero or more sub-resources
• Sub-resources can be simple resources or collection resources

– Format: /resource/identifier
• http://api.polito.it/students/s123456

• http://api.polito.it/courses/01zqp

4/22/2018 REST over HTTP 8



Best Practice

• Nouns (not verbs)

• Plural nouns

• Concrete names (not abstract)

– /courses, not /items

4/22/2018 REST over HTTP 9



Actions use HTTP Methods

• GET
– Retrieve the representation of the resource (in the HTTP 

response body)
– Collection: the list of items
– Element: the properties of the element

• POST
– Create a new resource (data in the HTTP request body)
– Use a URI for a Collection

• PUT
– Update an existing element (data in the HTTP request body)
– Mainly for elements' properties

• DELETE

4/22/2018 REST over HTTP 10



Actions on Resources: Example

Resource GET POST PUT DELETE

/dogs List dogs Create a new 
dog

Bulk update 
dogs
(avoid)

Delete all dogs
(avoid)

/dogs/1234 Show info 
about the dog 
with id 1234

ERROR If exists, update
the info about 
dog #1234

Delete the dog 
#1234

4/22/2018 REST over HTTP 11



Relationships

• A given Element may have a (1:1 or 1:N) relationship 
with other Element(s)

• Represent with: /resource/identifier/resource

• http://api.polito.it/students/s123456/courses 
(list of courses followed by student s123456)

• http://api.polito.it/courses/01qzp/students 
(list of students enrolled in course 01qzp)

4/22/2018 REST over HTTP 12



Representations

• Returned in GET, sent in PUT/POST
• Different formats are possible
• Mainly: XML, JSON

– But also: SVG, JPEG, TXT, …
– In POST: URL-encoding

• Format may be specified in
– Request headers

• Accept: application/json

– URI extension
• http://api.polito.it/students/s123456.json

– Request parameter
• http://api.polito.it/students/s123456?format=json

4/22/2018 REST over HTTP 13



Real Life: GitHub API

4/22/2018 REST over HTTP 14https://developer.github.com/v3/

https://developer.github.com/v3/


Real Life: Twitter API

4/22/2018 REST over HTTP 15https://dev.twitter.com/rest/public

https://dev.twitter.com/rest/public


Real Life: Google Calendar API

4/22/2018 REST over HTTP 16https://developers.google.com/google-apps/calendar/v3/reference/

https://developers.google.com/google-apps/calendar/v3/reference/


Real life: Facebook Graph API

4/22/2018 REST over HTTP 17https://developers.facebook.com/docs/graph-api

https://developers.facebook.com/docs/graph-api


Complex resource search

• Use ?parameter=value for more advanced 
resource filtering (or search)

– E.g., 
https://api.twitter.com/1.1/statuses/user_t
imeline.json?screen_name=twitterapi&count=2

4/22/2018 REST over HTTP 18



Errors

• When errors or exceptions are encountered, use 
meaningful HTTP Status Codes

– The Response Body may contain additional information 
(e.g., informational error messages)

4/22/2018 REST over HTTP 19

{
"developerMessage" : "Verbose, plain language description of 

the problem for the app developer with hints about how to fix 
it.",

"userMessage":"Pass this message on to the app user if 
needed.", 

"errorCode" : 12345, 
"more info": "http://dev.teachdogrest.com/errors/12345"

} 



Authorization: OAuth 
oauth_consumer_key="xvz1evFS4wEEPTGEFPHBog", …

Twitter Streaming API

Authorization: AWS 
AKIAIOSFODNN7EXAMPLE:frJIUNo//yllqDzg=

Amazon Web Services API

Authorization: Bearer 1/fFBGRNJru1FQd44AzqT3Zg

Google API

Authentication

4/22/2018 REST over HTTP 20



API DESIGN GUIDE 

ADI Design Guidelines

4/22/2018 REST over HTTP 21

https://cloud.google.com/apis/design/



API Design

• How to design a set of 
APIs for your
application?

• Practical guidelines,
with applied standard 
practices

• We will mainly follow
the Google API Design 
Guide
– https://cloud.google.co

m/apis/design/

4/22/2018 REST over HTTP 22

http://apistylebook.com/design/guidelines/

https://cloud.google.com/apis/design/


API Design Flow

• Determine what types of resources an API provides.

• Determine the relationships between resources.

• Decide the resource name schemes based on types 
and relationships.

• Decide the resource schemas.

• Attach minimum set of methods to resources.

4/22/2018 REST over HTTP 23



General approach

• A resource-oriented API emphasizes resources (data 
model) over the methods performed on the 
resources (functionality)

• A typical REST API exposes a large number of 
resources with a small number of methods

• Methods can be standard methods or custom
methods. 

• Standard methods are: List, Get, Create, Update, and 
Delete

4/22/2018 REST over HTTP 24



Example (Gmail API)

4/22/2018 REST over HTTP 25



Resource Names

• resources are named entities

• resource names are their identifiers

• Each resource must have its own unique resource 
name

• The resource name is made up of the ID of the 
resource itself, the IDs of any parent resources, and 
its API service name, separated by ‘/’

4/22/2018 REST over HTTP 26



Resource names

• Names used in APIs should be in correct American English.
• Commonly accepted short forms or abbreviations of long 

words may be used for brevity. E.g., API.
• Use intuitive, familiar terminology where possible. E.g., delete 

is preferred over erase.
• Use the same name or term for the same concept, including 

for concepts shared across APIs.
• Avoid name overloading. Use different names for different 

concepts.
• Avoid overly general names that are ambiguous within the 

context of the API.
• Carefully consider use of names that may conflict with 

keywords in common programming languages. 

4/22/2018 REST over HTTP 27



Collection names

• Must be valid C/C++ identifiers.

• Must be in plural form with lowerCamel case. If the term 
doesn't have suitable plural form, such as "evidence" and 
"weather", the singular form should be used.

• Must use clear and concise English terms.

• Overly general terms should be avoided or qualified. For 
example, rowValues is preferred to values.

• The following terms should be avoided without 
qualification: elements, entries, instances, items, objects, 
resources, types, values

4/22/2018 REST over HTTP 28



Standard Methods

4/22/2018 REST over HTTP 29

Let’s read: 
https://cloud.google.com/apis/design/standard_methods

https://cloud.google.com/apis/design/standard_methods


Guidelines

• Design with standards in mind – for example RSS & 
ATOM

• Create should return URIs not resources

• Use the right HTTP methods for the right actions

• You are on HTTP – use the infrastructure

– Proxy, Caching, Etag, Expires

4/22/2018 REST over HTTP 30



URL Design

Plural nouns for collections /dogs

ID for entity /dogs/1234

Associations /owners/5678/dogs

HTTP Methods POST GET PUT DELETE

Bias toward concrete names /dogs (not animals)

Multiple formats in URL /dogs.json
/dogs.xml

Paginate with limit and offset ?limit=10&offset=0

Query params ?color=red&state=running

Partial selection ?fields=name,state

Use medial capitalization "createdAt": 1320296464
myObject.createdAt;

Use verbs for non-resource 
requests

/convert?from=EUR&to=CNY&amount=100

Search /search?q=happy%2Blabrador

DNS api.foo.com
developers.foo.com

Guidelines 
(1/2)

4/22/2018 REST over HTTP 31



Errors

Status Codes 200 201 304 400 401 403 404 500

Verbose messages {"msg": "verbose, plain language hints"}

Versioning

Include version in URL /v1/dogs

Keep one previous version long enough 
for developers to migrate

/v1/dogs
/v2/dogs

Client Considerations

Client does not support HTTP status
codes

?suppress_response_codes=true

Client does not support HTTP 
methods

GET /dogs?method=post
GET /dogs
GET /dogs?method=put
GET /dogs?method=delete

Complement API with SDK and code 
libraries

1. JavaScript
2. …
3. …

Guidelines 
(2/2)

4/22/2018 REST over HTTP 32



REST API IMPLEMENATION

Using Python and Flask for implementing REST APIs

4/22/2018 REST over HTTP 33



General rules

• Use @app.route to match the REST method

– Specify methods: GET or POST

– Use parametric routes for resource IDs

• Use jsonify to create a JSON response (with correct
Content-type) from a Python object

• In case of POST, request.json parses a JSON-encoded
request body

4/22/2018 REST over HTTP 34



List method

4/22/2018 REST over HTTP 35

@app.route('/users')

def api_users():

return jsonify(users)



Get method

4/22/2018 REST over HTTP 36

@app.route('/users/<name>')

def api_user(name):

user = [u for u in users 

if u['name'] == name]

if len(user) == 1:

return jsonify(user)

else:

response = jsonify(

{ 'message': "No user "+name })

response.status_code = 404

return response



Create method

4/22/2018 REST over HTTP 37

@app.route('/users', methods=['POST'])

def api_create_user():

if request.headers['Content-Type’]

== 'application/json':

new_user = request.json

users.append(new_user)

else:

response = jsonify(

{ 'message': "Invalid Request"})

response.status_code = 404

return response



Calling / testing REST APIs

• Use the wonderful ‘requests’ package

– import requests

– http://docs.python-requests.org/en/master/

– See: http://docs.python-
requests.org/en/master/user/quickstart/

• Cheatsheet

– r = requests.get(url)

– r = requests.post(url, json=data)

– r.json()

4/22/2018 REST over HTTP 38

http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/user/quickstart/


Calling List method

4/22/2018 REST over HTTP 39

def list_users():

url = base_url+'/users’

r = requests.get(url)

return r.json()



Calling Get method

4/22/2018 REST over HTTP 40

def one_user(name):

url = base_url + '/users/' + name

r = requests.get(url)

if r.status_code == 200:

return r.json()

else:

return None



Calling Create method

4/22/2018 REST over HTTP 41

def add_user(name, firstname, lastname):

user = { 'name': name,

'firstname': firstname, 

'lastname': lastname }

url = base_url + '/users’

r = requests.post(url, json=user)



Resources

• http://en.wikipedia.org/wiki/Representational_state_transfer 

• R. Fielding, Architectural Styles and
the Design of Network-based Software Architectures, 
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

• Learn REST: A Tutorial: http://rest.elkstein.org/ 

• https://pages.apigee.com/ebook-web-api-design-
registration.html 

• http://www.slideshare.net/apigee/api-design-3rd-edition

• Google API Design Guide: 
https://cloud.google.com/apis/design/

• Discussion forum: groups.google.com/group/api-craft

4/22/2018 REST over HTTP 42



License

• This work is licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 4.0)” License.

• You are free:
– to Share - to copy, distribute and transmit the work
– to Remix - to adapt the work

• Under the following conditions:
– Attribution - You must attribute the work in the manner specified by the 

author or licensor (but not in any way that suggests that they endorse you 
or your use of the work).

– Noncommercial - You may not use this work for commercial purposes.
– Share Alike - If you alter, transform, or build upon this work, you may 

distribute the resulting work only under the same or similar license to this 
one.

• To view a copy of this license, visit 
https://creativecommons.org/licenses/by-nc-sa/4.0/

4/22/2018 REST over HTTP 43

https://creativecommons.org/licenses/by-nc-sa/4.0/

