
Introduction to
Android
Ambient intelligence

Alberto Monge Roffarello

Politecnico di Torino, 2017/2018

Some slides and figures are taken from the

Mobile Application Development (MAD) course

Disclaimer

• This is only a quick introduction:

– It is not complete (only scrapes the surface)

– Only superficial notions are provided

5/21/2018 Android: Quick Introduction 2

It is a guide to self-learning and self-documentation

ONLINE DOCUMENTATION:
https://developer.android.com/guide/

Summary
• Short history

• Platform

• Application Fundamentals

• Application Lifecycle

• Tools

5/21/2018 3Android: Quick Introduction

ANDROID HISTORY
Android app development

History

• Originally created by Andy Rubin

• Acquired by Google Inc. in 2005

• Now it is maintained by the Open Handset Alliance
(OHA) (since 2007)

• Several stable releases since then

5/21/2018 5Android: Quick Introduction

Market share

5/21/2018 6

• Hundreds of millions of mobile
devices in more than 190 countries
around the world

• more than 300 hardware, software,
and carrier partners

• Android users download more than
1.5 billion apps and games from
Google Play each month.

Device activations growth

Android: Quick Introduction

Versions

5/21/2018 7

https://developer.android.com/about/dashboards/index.html

Android: Quick Introduction

THE ANDROID PLATFORM
Android app development

Android Platform

• Android is “an open source software stack for a wide range of
mobile devices and a corresponding open source project led
by Google.”1

• It is composed of:
– an operating system

– a software platform for creating apps and games

5/21/2018 9

1 https://source.android.com/

Android: Quick Introduction

Android Platform

• Development Tools are free:
– Android applications are (mostly) written in Java programming

language (6 or higher)

– Alternatively, a C++ API is available

• There is no distinction between native and third-party
applications
– All the applications use the same Software Development Kit (SDK)

– All the applications can access the underlying hardware

5/21/2018 10Android: Quick Introduction

Java

• General-purpose computer-programming language

– Concurrent

– Class-based

– Object-oriented

– Portable

5/21/2018 11Android: Quick Introduction

Java

• Java applications are typically compiled to bytecode
that can run on any Java virtual machine (JVM)
regardless of computer architecture

• Java bytecode instructions are analogous to machine
code, but they are intended to be executed by a
virtual machine (VM) written specifically for the host
hardware.

5/21/2018 12Android: Quick Introduction

Android Architecture

• Android is composed of an operating system and a
software platform for creating apps and games
– Android includes a set of minimal applications (browser,

email client)
• These basic features can be easily included in other applications

• Android has been designed to be robust
– It is based on the Linux Operating System Kernel

– Every Android application runs in its own process, with its
own instance of the virtual machine

5/21/2018 13Android: Quick Introduction

Architecture

5/21/2018 14Android: Quick Introduction

Architecture

5/21/2018 15

• Android is based on the Linux
Kernel:
– takes advantage of the Linux Kernel

key security features

– allows device manufacturers to
develop hardware drivers for a well-
known kernel

Android: Quick Introduction

Architecture

5/21/2018 16

• Provides standard interfaces that
expose device hardware
capabilities to the higher-level Java
API framework.

• It consists of multiple library
modules that implement interfaces
for specific type of hardware
components (e.g., camera,
Bluetooth …)

Android: Quick Introduction

Architecture

5/21/2018 17

• ART is an application runtime
environment (prior to Android 5.0,
Dalvik used instead of ART)

• It is written to run multiple virtual
machines, one for each running
application

• Each app runs in its own process
within its own instance of the
Android Runtime (ART)

Android: Quick Introduction

Architecture

5/21/2018 18

• Many core Android system
components and services, (e.g.,
ART and HAL), are built from native
code that require native libraries
written in C and C++

• If you want to develop your app
using C or C++, you can use the
Android NDK

Android: Quick Introduction

Architecture

5/21/2018 19

• The entire feature-set of the
Android OS is available through
Java APIs

• These APIs form the building
blocks needed to create Android
apps

Android: Quick Introduction

Architecture

5/21/2018 20

• Android comes with a set of core
apps

• Android doesn’t make any
distinction between native and
third-party applications

Android: Quick Introduction

Security

• Every application runs with its own user
– Once the application is installed, the operating system creates a new

user profile associated with it

– Filesystem permissions ensure that one user cannot alter or read
another user's files

• Every application must declare which shared resources will use
– For example, making phone calls, using the camera or other sensors

– Android will block applications which try to use not declared resources

• Every application also requires the permission to access the user’s
private data
– Such as preferences, user location, user contacts, …

– If the permission is not granted, the installation fails

5/21/2018 21Android: Quick Introduction

APPLICATION FUNDAMENTALS

Android app development

RECAP

• The Android SDK exposes a set of APIs, which allows the
access to the underlying hardware
– No distinction between “native applications” and “third-party

applications”

– Every application, if equipped with the appropriate permissions,
can use them

• Android includes a set of minimal applications such as a
browser, and an email client
– Third-party provided applications can integrate, extend or even

replace them

• The main programming language is Java
– But it is possible to develop applications using C++, as well

5/21/2018 23Android: Quick Introduction

Application Structure

• Conceptually, an application consists of a set of data

and code designed to perform a given set of tasks

• Android applications do not have a single entry point,
as it happens in other operating systems

– Each application consists of one or more components,
activated by the operating system, at its own will

5/21/2018 24Android: Quick Introduction

Application Structure

• Each component takes care of a specific interaction
with the operating system and/or the user

– Component creation, operation, and destruction follow a
well defined life-cycle

5/21/2018 25Android: Quick Introduction

Application Structure

• Each application consists of one or more of the
following components:

– Activity

– Service

– Content Provider

– Broadcast Receiver

5/21/2018 26Android: Quick Introduction

Activity
• An activity is a software component

that:
– Has a Graphical User Interface

– Can perform a task inside the
application

• An application is composed by one
or more activities. An email app
might have the following activities

– one that shows a list of new emails;

– one to compose an email;

– one for reading emails.

5/21/2018 27Android: Quick Introduction

Service

• A service is a component that can run in the
background

– It does not provide a user interface

• Usually services are used to perform long tasks

– A service could play music while the user is using another
application

– A service could gather network data without blocking the
user interaction with another activity

5/21/2018 28Android: Quick Introduction

Content provider

• A content provider manages a shared set of app data

– Data can be stored in the file system, in an SQLite database,
on the web, or in any other persistent storage location the
app can access

– It implements a set of standard methods that allow other
applications to fetch and to store data handled by the
current application

– Other applications do not call its method directly, but they
interact via a content

5/21/2018 29Android: Quick Introduction

Broadcasts

• A Broadcast Receiver is a component which “waits”
for messages
– Some messages are created by the Operating System

• For example, whenever the display is turned off, when the battery
is low …

– Applications can produce messages, too
• For example, when a data transfer is completed

• A broadcast receiver does not have a Graphical User
Interface, but it can generate notifications in the
status bar
– To notify the user that a particular message is detected

5/21/2018 30Android: Quick Introduction

5/21/2018 31

File
File

Files

Database

Classi
Classi

Classi
Classes

Service

BroadcastReceiver

Content

Provider
Activity

Activity

Service

Content

Provider

BroadcastReceiver

Application

User

interaction

System Events

O
th

e
r

a
p
p
lic

a
ti
o
n
s

Data

request

Network

Requests

Operating System

Android: Quick Introduction

APPLICATION LIFECYCLE

Android app development

• The functionality provided by an application are
defined by its manifest file

– It is an XML document that “signs a sort of contract”
between the application and the execution environment

– It lists all the single components that compose the
application, the requested permissions and their
configurations information

5/21/2018 33

Application Lifecycle

Android: Quick Introduction

• When an external event occurs, based on its type and
on the components declared in the manifest file,
Android creates a new process

– Its owner is the one that was created when the application
was installed

• For each application in execution, Android instantiates in its
process a single object of class android.app.Application
– It is possible to specify a subclass of it in the manifest file

– This object can be used to store global information shared by all
the app components

5/21/2018 34

Application Lifecycle

Android: Quick Introduction

• Android notifies the application object with the
evolving status of the ongoing elaboration
– void onCreate()

– void onConfigurationChanged(…)

– void onLowMemory()

– void onTerminate()

5/21/2018 35

Application Lifecycle

Android: Quick Introduction

• Once the application object has been created and
initially notified of the beginning of the process,
Android instantiates the main activity

• The activity receives some initial events:
– void onCreate()

– void onStart()

– void onResume()

• The application object stays in memory as long as
there are active components
– The application object is removed from the memory

when all the components end their lifecycle

5/21/2018 36

Application Lifecycle

Android: Quick Introduction

Activity - Lifecycle

5/21/2018 37

• As a user navigates
through, out of, and
back to an app, the
Activity instances in
this app transit through
different states

Android: Quick Introduction

• To instantiate components, Android uses intents

• An intent defines an action to be performed and a set
of data on which to operate

– The operating system finds and instantiates the
corresponding components that can handle the required
action

• Intents can be implicit or explicit

5/21/2018 38

Intents

Android: Quick Introduction

• They consist of several parts, the most important of
which are

– The action, a unique string describing what is requested or
what has happened

– The data to operate upon, typically expressed as a URI

– The category, one or more strings containing additional
information about the kind of component that should
handle the intent

5/21/2018 39

Implicit Intents

Android: Quick Introduction

Implicit Intents and Manifest File

• All the components exported by an application are
listed in its manifest file

– Together with zero or more intent-filters

• Each filter describes a capability of the component, a
set of intents that the component is willing to receive

– Listing fields corresponding to the action, data, and
category fields of an Intent object

5/21/2018 40Android: Quick Introduction

Implicit Intents and Manifest File

• When an intent is delivered, Android tries to match it
against all filters, in order to detect which component
should be activated

– Filters are also used to learn something about the
component itself: the launcher is populated with all
activities that have filters reporting action MAIN and
category LAUNCHER

5/21/2018 41Android: Quick Introduction

5/21/2018 42

<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.mycompany.myapplication"
android:versionCode="1"
android:versionName="1.0" >
<uses-sdk

android:minSdkVersion="11"
android:targetSdkVersion="15" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >

<activity
android:name=".MainActivity"
android:label="@string/title_main_activity" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER”/>

</intent-filter>
</activity>

</application>
</manifest>

Android: Quick Introduction

Explicit Intents

• An explicit intent is one that you use to launch a
specific app component, such as a particular activity
or service

• You can create and send to Android explicit intents
from your code

• Typically, you have to specify the context of your app,
and the Java class of the component you are
interested in

5/21/2018 43Android: Quick Introduction

DEVELOPING FOR ANDROID: TOOLS

Android app development

Environment setup

• The most convenient tool for developers today is
Android Studio

– http://developer.android.com/sdk/index.html

• Android Studio offers

– A rich code editor

– Several code templates and integration with GitHub

– Instant preview for many different devices

– Dependency support and build automation via Gradle

5/21/2018 45Android: Quick Introduction

http://developer.android.com/sdk/index.html

Environment Setup

• Beside an IDE, the Android SDK need to be installed

– Automatically done by the Android Studio installer

• Android SDK consists of a bunch of programs broadly
divided into SDK tools and platform tools

5/21/2018 46Android: Quick Introduction

SDK Tools

• Set of tools for debugging and testing, and other
utilities that are required to develop an app

– Installed in folder <sdk>/tools

• The most relevant are:

– The emulator, that need some configuration before being
run

– The Android Debug Monitor, that provides debugging and
profiling support for both emulators and real devices

5/21/2018 47Android: Quick Introduction

Deploying Apps on Phones

• To install applications on your phone through

USB cable, the “Debug mode” must be enabled

– You need to activate the Developer Options

– Different phones have different ways to activate the

Developer Options

5/21/2018 48Android: Quick Introduction

PROJECT SETUP
Android app development

Using Android Studio

5/21/2018 50Android: Quick Introduction

Using Android Studio

5/21/2018 51Android: Quick Introduction

Project Structure

• Android Studio provides several alternative views for
the project structure

– The “Android” view shows a flattened version emphasizing
source files

– The “Project” view provides a more detailed
vision of the folder structure, showing generated files

5/21/2018 52Android: Quick Introduction

Project Structure

5/21/2018 53Android: Quick Introduction

Source Files

• Source files are split into manifest, java, and resource
files

– A Manifest file describes the features, permissions and
software components of the application

– Java files are organized in packages and sub-packages
according to the programmer’s will

– Resources are non-executable contents needed at program
run-time (images, layout, values, …)

5/21/2018 54Android: Quick Introduction

Setting up a virtual device

• To emulate the execution of an app, an Android
Virtual Device (AVD) should be configured and run

– Configuration provides information about the Android OS
version, the device hardware capabilities and screen
configuration, the size of an external SDCard, …

– Common practice is to create several AVDs with different
configuration to test various execution environments

5/21/2018 55Android: Quick Introduction

Questions?
01QZP AMBIENT INTELLIGENCE

Alberto Monge Roffarello

alberto.monge@polito.it

License

• This work is licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 4.0)” License.

• You are free:
– to Share - to copy, distribute and transmit the work
– to Remix - to adapt the work

• Under the following conditions:
– Attribution - You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they endorse you
or your use of the work).

– Noncommercial - You may not use this work for commercial purposes.
– Share Alike - If you alter, transform, or build upon this work, you may

distribute the resulting work only under the same or similar license to this
one.

• To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/

21/05/2018 57Android: Quick Introduction

https://creativecommons.org/licenses/by-nc-sa/4.0/

