
01QZP	–	Ambient	Intelligence:	technology	and	design	

Lab	7	–	jQuery,	Ajax,	REST:	a	full	exercise	

Luigi	De	Russis,	Alberto	Monge	Roffarello	

	

LAB	7	–	JQUERY,	AJAX,	REST:	A	FULL	EXERCISE	
GETTING	STARTED	

The	goal	of	this	set	of	exercises	is	to	implement	an	Ajax	front-end	for	the	todo	list	manager.	

Recap:	
1. Fork	your	own	copy	of	the	Git	repository	associated	with	this	lab	(https://github.com/AmI-2018/python-lab7)	to	

your	personal	GitHub	space	
2. Open	PyCharm	Professional	and	select	Checkout	from	Version	Control	>	Git	in	the	“Welcome	to	PyCharm”	

window,	to	clone	your	(forked)	repository		
3. Fill	the	requested	fields	(repository	URL,	location	on	disk,	…)	and	press	the	“Clone”	button	
4. Commit	and	push	the	changes	you	made	back	to	GitHub,	from	the	VCS	menu	in	PyCharm	

EXERCISE	1	–	GET	TASKS	

Extend	the	client	implemented	in	classroom1,	and,	in	particular,	the	“tasks.js”	script,	to	visualize	the	urgent	information	
associated	with	each	task.		

As	an	example,	you	can	look	at	following	repository:	https://github.com/AmI-2018/rest-ajax

EXERCISE	2	–	INSERT	TASKS	

Extend	the	client	to provide	basic	support	for	inserting	a	task	by	JavaScript.		

For	this	purpose:	

a) Add	a	urgentTask	checkbox	inside	the	addForm	(file	“tasks.html”)	to	specify	whether	the	task	is	urgent	or	
not.	

b) Complete	the	submit	handler	(file	“tasks.js”)	to	extract	the	values	from	the	form	and	post	them	to	REST	
server.		

c) Update	the	list	of	printed	tasks	as	soon	as	the	server	responds	with	a	success	response.	

As	an	example,	you	can	look	at	the	following	repository:	https://github.com/AmI-2018/rest-ajax	

EXERCISE	3	–	DELETE	TASKS	

Extend	the	client	to provide	basic	support	for	deleting	a	task.	

1 You can find the basic client developed in classroom, along with a working REST server implementation, in the repository
of this lab. Clone the repository to start working on it.

01QZP	–	Ambient	Intelligence:	technology	and	design	

Lab	7	–	jQuery,	Ajax,	REST:	a	full	exercise	

Luigi	De	Russis,	Alberto	Monge	Roffarello	

	
For	this	purpose:	

1. Add	a	delete	button	near	each	task.	This	button	should	be	added	dynamically,	from	the	“tasks.js”	file.	
2. Store	the	ID	of	each	task	in	each	delete	button.	For	this	purpose,	you	can	use	the	custom	data-*	attributes	

available	in	HTML5	(https://www.w3schools.com/tags/att_global_data.asp).	
3. Implement	a	deleteTask	function	to	delete	a	task,	and	associate	it	to	the	click	event	of	the	delete	button	(file	

“tasks.js”).	
4. Update	the	list	of	printed	tasks	as	soon	as	the	server	responds	with	a	success	response.	

EXERCISE	4	–	UPDATE	TASKS	

Extend	the	client	to provide	basic	support	for	updating	a	task.	

For	this	purpose:	

1. Add	an	update	button	near	the	delete	one	for	each	printed	task.	This	button	should	be	added	dynamically,	from	
the	“tasks.js”	file.	

2. Whenever	the	update	button	is	pressed:	
a. Load	the	information	related	to	the	selected	task	in	the	taskDescription	textbox	and	in	the	urgentTask	

checkbox	of	the	addForm.	
b. Change	the	text	value	of	the	addTask	button	from	“Add”	to	“Update”.	
c. Change	the	method	of	the	addTask	form	from	POST	to	PUT,	and	the	submit	handler	to	a	new	

updateTask	function.	
3. Implement	the	updateTask	function	to	perform	the	following	operations:	

a. Send	the	data	to	the	server	through	a	PUT	request.	
b. Update	the	list	of	printed	tasks	as	soon	as	the	server	responds	with	a	success	response.	
c. Reset	all	the	elements	in	the	addForm	to	the	original	values/methods.	

	

	

	

	

	

	

	 	

