
Introduction to 
JavaScript
Ambient intelligence: technology and design 

Fulvio Corno

Politecnico di Torino, 2014/2015



Goal

• Learn about Javascript

• Learn about client-side programming mechanisms

2014/2015 Ambient intelligence: technology and design 2



Outline

• Introduction

• Language syntax

• Objects

• Functions

• Events

• The HTML Document Object Model

• Rich Internet Applications and AJAX



JAVASCRIPT / ECMASCRIPT
Client-side programming in the web

2014/2015 Ambient intelligence: technology and design 4



Client-side programming

• 4th layer of web architectures

– Database (SQL)

– Application server (PHP or JSP)

– Presentation (HTML+CSS)

– Interactivity (Javascript+DOM)

• Adds interactive functionality to client-side web 
pages



Client-side interactivity

• The HTML standard allows only 2 types of interaction 
with a page

– Select a link (and jump to a new page)

– Submit a form
• Interact with form elements (input, select, ...)

• Every modification to a page requires re-loading it 
completely

– Slow

– Higher demand on the server

– Decreases usability



Some common problems

• Form validation

– Avoid submitting a form unless validation rules are satisfied

– Show validation errors immediately, and near to the error

• Form filling

– Pre-load select lists dynamically

• Hide/show some page elements

– Form filling instructions

– Menus



The solution

• Add a language interpreter to the browser

• Instructions are embedded in the HTML page

– “invisible” to the application server

– “invisible” to the HTML presentation engine

• Instructions are processed by the browser, after 
HTML has been loaded



Architecture

PHP
interpreter

HTTP server

PHP
+

HTML
+
JS
+

SQL

HTML
+
JS

Web
browser

HTML
+
JS

JS
interpreter

HTML
interpreter

HTML JS

DOM

Rendering
engine

User
window Database



The Javascript language

• First developed by Netscape in 1995

– Nothing to do with the Java language, the name was 
chosen for marketing reasons

– Syntax similar to C

– Semantics of object-oriented language, with non-typed 
variables

• Similar versions implemented by all other browsers

– Microsoft calls it Jscript

• Later standardized by ECMA (www.ecma.ch)

– ECMAScript

http://www.ecma.ch/


Similarities

2014/2015 Ambient intelligence: technology and design 11

C

Python

Java

JavaScript

Syntax 
{} ; for if while

Explicit variables

Interpreted language
Dynamic typing

Built-in types

Nothing but the 
name…



Embedding JS in HTML

• <script> element

• Embedded or external



Embedded JS

<script 
type="text/javascript">
<!--

[JavaScript code here]

// -->
</script>

<script 
type="text/javascript">
// <![CDATA[

[JavaScript code here]

// ]]>
</script>

HTML XHTML



Where to embed JS code?

• In the head section: Scripts to be executed when they 
are called, or when an event is triggered, go in the 
head section. When you place a script in the head 
section, you will ensure that the script is loaded 
before anyone uses it. 

• In the body section: Scripts to be executed when the 
page loads go in the body section. When you place a 
script in the body section it generates the content of 
the page.



External JS

<script type="text/javascript" src="script.js">
<!--

[Page specific JavaScript code here]

// -->
</script>

<script
type="text/javascript"
src="script.js"></script>



Example 1

alert("Hello World!");

Exercise 1.1:
Create an HTML page including the 

above Javascript instruction 
(embedded)



Example 1

alert("Hello World!");

Exercise 1.1:
Create an HTML page including the 

above Javascript instruction 
(embedded)

Exercise 1.2:
Create a PHP page that includes a Javascript 
Alert than shows “Good morning” or “Good 

afternoon” or “Good Night” depending on the 
time of the day



Example 1

alert("Hello World!");

Exercise 1.1:
Create an HTML page including the 

above Javascript instruction 
(embedded)

Exercise 1.2:
Create a PHP page that includes a Javascript 
Alert than shows “Good morning” or “Good 

afternoon” or “Good Night” depending on the 
time of the day

Exercise 1.3:
Experiment with the following 

instruction:
confirm(“xxx”) ;



Example 2

document.write("Hello World!")

Exercise 2.1:
Create an HTML page including the 

above Javascript instruction 
(embedded)



Example 2

document.write("Hello World!")

Exercise 2.1:
Create an HTML page including the 

above Javascript instruction 
(embedded)

Exercise 2.2:
Create an HTML page that asks the 

user if it is morning, and then puts the 
right salutation into the body of the 

web page.



What more can we do?

• Generate dialog boxes

• Redirect a page

• Open new browser 
windows (pop-ups)

• Intercept mouse events

– Clicks on links, buttons, 
...

– Mouse-overs

• Read user input in 
FORMs

• Modify HTML pages

– Add/remove content

– Change images

– Modify FORM controls



What should we learn?

• JS variables and 
expressions

• JS language constructs 
(if, while, ...)

• What is a JS object

• Most important builtin 
objects

• Interacting with the 
user: mouse, keyboard

• Interacting with the 
browser: windows, 
pages

• Interacting with the 
page: the Document 
object



LANGUAGE SYNTAX
Introduction to Javascript



Javascript syntax

• The syntax of the Javascript language is very similar to 
the C language (and to PHP)

– Choice, Looping and other constructs are equal

– Blocks delimited by { }

– Most operators are identical

• Variables are different

– Variable types

– ‘Object’ variables



Comments

• Line comments: from // to end of line

• Block comments: from /* to */

//this is a comment
document.write("Hello World!")

/* This is a comment
block. It contains
several lines */
document.write("Hello World!")



Variables in Javascript

• A variable is identified by its name

– Case-sensitive

– Declared with var

• The same variable may have different values

– Even of different data types

• Data types are converted as needed

– If all operands are numeric, then compute a numeric result

– If some operands are string, then convert numbers to 
strings



Variable declaration

• var x ;

• var x = 10 ;

• var x = "Hello" ;



Variable assignment

• var x ;

• x = 10 ;

• x = "Hello" ;

• x = x + 1 ;

• x = any complex expression



Types of variables

• Boolean ( false, true )

• Numbers

– var x = 10

– var y = 3.14

• Strings

– var name = "Fulvio"

• ‘Objects’

– var d = new Date()

– var time = d.getHours()



Main Javascript operators (1/3)

• Numeric operators
– +

– -

– *

– /

– % (remainder, or modulus)

• Increment operators
– ++

– --

• Assignment operators
– =

– +=   -=   *=   /=   %=



Main Javascript operators (2/3)

• String operator

– + (concatenation)

• Comparison operators

– == (same value)

– === (same value and same type)

– !=

– >

– <

– >=

– <=



Main Javascript operators (3/3)

• Boolean and Logic operators

– && (logical “and”)

– || (logical “or”)

– !  (logical “not”)



Warning

• String concatenation operator (+) is identical to 
numeric addition

– Possible ambiguity

– 3 + 2

– "3" + "2"

• Difference between == and ===

– 5 == "5"

– 5 === 5

– "5" === "5"

– Not true: 5 === "5"



Choice statements (1/2)

if (condition)
{

...code...
}

if (condition)
{

...code if true...
}
else
{

...code if false...
}

if (condition1)
{

...code if 1 true...
}
else if (condition2)
{

...code if 2 true...
}
else
{

...if both false...
}



Choice statements (2/2)

switch(n)
{
case 1:

code block 1
break

case 2:
code block 2
break

default:
code to be executed if n is
different from case 1 and 2

}



Loop statements (1/2)

for ( v = startvalue;
v < endvalue;
v = v+increment ) 

{
code to be executed

}

while ( condition_is_true ) 
{

code to be executed
}

do {
code to be executed

} while ( condition_is_true ) 



Loop statements (2/2)

while ( ... ) // or for
{

code
break ; 
code

}

while ( ... ) // or for
{

code
continue ;
code

}



Basic interaction methods

• Popup box (OK to confirm)

– alert("text")

• Confirm box (OK, cancel)

– confirm("text")

– True if user clicked on OK

• Prompt box (let user insert a text)

– prompt("prompt text", "initial value")

– Returns a string with the text inserted by the user

– Returns null if user clicked on Cancel



FUNCTIONS
Introduction to Javascript



Defining a new function 
(1/2)

function functionname(var1,var2,...,varX)
{

some code
}

List of function 
arguments

(passed ‘by value’)

Function body

Name



Defining a new function 
(2/2)

function functionname(var1,var2,...,varX)
{

some code
}

function functionname()
{

some code
}

No parameters



Return statement

• A function may return a value to its caller by 
executing the return statement

– return value ;

• The value may be of any type (boolean, numeric, 
string, ...)



Example
<html>
<head>
<script type="text/javascript">

function product(a,b)
{

return a*b;
}

</script>
</head>

<body>
<script type="text/javascript">

document.write(product(4,3)) ;
</script>
</body>
</html>



OBJECTS
Introduction to Javascript



Objects in Javascript

• An object is a complex data type characterized by

– A current value
• Sometimes the internal value is “hidden”

– A set of properties
• Various values that be read, associated in some way to the object 

value

• Some values that may be written, that modify in some way the 
object value

– A set of methods
• Operations (with parameters) that can be asked to the object



Using objects

• Creating new objects

– var d = new Date()
• Create a new Object of type Date, and use the variable d as a 

reference to that object

• Properties and methods

– var day = d.getDay() ;

– d.setMinutes(34) ;



String objects

• Strings are used to store and manipulate sequences 
of characters

• Constant values are written between quotes "Hello"

• The only property is

– .length (the number of characters in the string)

• Many methods implement several string operations



Example

var txt="Hello world!"
document.write(txt.length)

12



String methods (1/2)

• Access to the i-th character (starting from 0)
– s.charAt(i)

• Concatenate two strings
– s3 = s1.concat(s2)

• Find a substring
– i = s.indexOf("abc") // -1 if not found

– j = s.indexOf("abc", i+1)

– s.lastIndexOf searches from the end

• Replace
– s = s.replace("Belusconi", "Prodi")



String methods (2/2)

• Extract substring

– s1 = s.substr(startPos, numChars) 

– s1 = s.substr(startPos) // until the end

– s1 = s.substring(startPos, endPos)

• Case conversion

– upper = s.toUpperCase()

– lower = s.toLowerCase()



String methods for HTML formatting

• The String object has several methods to insert tags 
around the specified string

– .big(), .small(), .italic(), .bold(), .fixed()

– .fontcolor(c), .fontsize(s), 

– .anchor("name"), .link("url")

var txt="Hello world!"
document.write(txt.bold())

<b>Hello world!</b>



Exercise 1

• Use a pop-up window to ask the user his/her name

• Write the user’s name in the page heading <h1>



Exercise 2

• Use a pop-up window to ask the user his/her name

• Write the user’s name in the page heading <h1>, 
properly formatting it in “title case”

– Example: if name = “fulvio CORNO”, then print “Fulvio 
Corno”



Date objects

• The Date object is used to work with dates and times

• New objects are created with the current timestamp

– var d = new Date() // now!

• A specific value may be set

– d.setFullYear(2007, 04, 23)

– d.setHours(23, 59, 00)



Date querying methods

• Return numeric components of the date and time 
stored in the object:

– .getDate(),  .getDay() /*of week*/, .getMonth(), 
.getFullYear()

– .getHours(), .getMinutes(), .getSeconds(), 
.getMilliseconds()

• Return a string representing the date

– .toString(), .toLocaleString()

• Return milliseconds since 01/01/1970

– .getTime()



Date setting methods

• Setting date and time from numeric components

– .setMonth(m), .setDate(day_of_month), .setFullYear(y), 
.setFullYear(y, m, d)

– .setHours(h), .setMinutes(m), setSeconds(s), setHours(h, m, 
s)

• Setting a date from a string

– Date.parse("Apr 23, 2007") returns the number of 
milliseconds

– d.setTime(Date.parse("Apr 23, 2007"))



Exercise 3

• Modify Exercise 2, and write the current date and 
time in the footer of a web page

• Add a salutation (Good Morning, Good Afternoon, 
Good Night, ...) according to the current time of the 
day

– The salutation must be in the same <h1> as the name



Array objects

• Creating an empty array

– var a = new Array()

– var a = new Array(maxsize)

• Setting values

– a[0] = "Fulvio"

– a[1] = "Dario"

• Using values

– document.write(a[0])

– var s = a[1].toUpperCase()



Array properties

• The property .length returns the number of elements 
in the array

– var N = a.length

var mycars = new Array()
mycars[0] = "Saab"
mycars[1] = "Volvo"
mycars[2] = "BMW"

for (i=0;i<mycars.length;i++)
{

document.write(mycars[i] + "<br />")
}



Array methods (1/2)

• Concatenate two arrays

– a3 = a1.concat(a2)

– Creates a new array with all elements from a1, followed by 
all elements from a2

• Extract a sub-array

– a2 = a1.slice(start_index, end_index)

• Sort in alphabetical order

– a2 = a.sort()



Array methods (2/2)

• Convert an array to a string

– var s = a.join() // "abc,def"

– var s = a.join("-") // "abc-def"

• Convert a string to an array

– var a = s.split(",")



Esercise 4

• Collect a set of number from the user

– Each number in inserted in a pop-up window

– The insertion is terminated by pressing Cancel

• Print in the HTML page the list of all inserted 
numbers

• Print in the HTML page the maximum, minimum and 
average of the inserted numbers



Math object

• The Math object is a special object: no variables may 
be created, but a lot of methods are defined, that 
may be called

• Think of Math as a “library” of mathematical 
functions



Math contants

• Math.E

• Math.PI

• Math.SQRT2   // √2

• Math.SQRT1_2 // √(1/2)

• Math.LN2     // loge(2)

• Math.LN10    // loge(10)

• Math.LOG2E   // log2(e)

• Math.LOG10E  // log10(e)



Math functions (1/2)

• Trigonometric

– Math.cos(x), Math.sin(x), Math.tan(x), Math.acos(x), 
Math.asin(x), Math.atan(x), Math.atan2(y, x)

• Exponential and logarithmic

– Math.exp(x), Math.log(x), Math.pow(base,exp), 
Math.sqrt(x)



Math functions (2/2)

• Truncation and rounding

– Math.ceil(x), Math.floor(x), Math.round(x)

• Signs and comparisons

– Math.abs(x), Math.max(a,b), Math.min(a.b)

• Random

– Math.random() // random number in interval [0,1)



Exercise 5

• Write a Javascript program to play the “Guess a 
number” game

• The program must generate a secret number 
between 1 and 100

• The user inserts a set of guesses into a pop-up 
windows

• Each time, the program tells the user if the guess was 
too high or too low

• The HTML page, at the end, will show the list of all 
guesses, and the number of attempts



EVENTS
Introduction to Javascript



Javascript event model

• An event is the indication that something happened 
on a web page

– Some user interaction (click, move mouse, ...)

– Some browser action (load page, ...)

• In Javascript, you may attach an event handler to 
most events

– Any Javascript function

– The Javascript interpreter calls the function anytime the 
event is generated



Example
<html>

<head>
<script type="text/javascript">

function sayHello()
{
alert("Hello!")

}
</script>

</head>

<body>
<form>

<input type="button" onclick="sayHello()"
value="Press me">

</form>
</body>

</html>



HTML DOCUMENT OBJECT MODEL 
(DOM)

HTML Document Object Model (DOM)



Document Object Model

• The HTML Document Object Model (HTML DOM) 
defines a standard way for accessing and 
manipulating HTML documents.

• The DOM presents an HTML document as a tree-
structure (a node tree), with elements, attributes, 
and text.



DOM example



DOM structure

• The entire document is a document node

• Every HTML tag is an element node

• The texts contained in the HTML elements are text 
nodes

• Every HTML attribute is an attribute node

• Comments are comment nodes

• Nodes have a hierarchical relationship to each other



Example

<html>
<head>
<title>DOM Tutorial</title> 

</head> 
<body> 
<h1>DOM Lesson one</h1> 
<p>Hello world!</p> 

</body> 
</html>



Example

<html>
<head>
<title>DOM Tutorial</title> 

</head> 
<body> 
<h1>DOM Lesson one</h1> 
<p>Hello world!</p> 

</body> 
</html>



Example
<html>

<head>
<title>DOM Tutorial</title> 

</head> 
<body> 
<h1>DOM Lesson one</h1> 
<p>Hello world!</p> 

</body> 
</html>



Javascript and the DOM

• Each node in the HTML DOM is automatically 
available as a corresponding Javascript object

• Methods and properties of the object correspond to 
content and attributes of the HTML element

• Any modification to the object fields are immediately 
reflected in the HTML page

• The object “document” is the top of the HTML page



Finding objects

• Alternative methods

– Navigating through children and siblings, starting from the 
document node

– Identifying specific elements by their tag name
• Use getElementsByTagName("tag")

• Returns all the elements with that tag

– Identifying specific elements by their “id” attribute 
(recommended!)

• Add an “id” attribute, with a unique value, to any HTML tag

• Use getElementById("id")



Example (1/2)

<html>
<head>
<title>DOM Tutorial</title> 

</head> 
<body> 
<h1 id="banner">DOM Lesson two</h1> 
<p  id="mytext">Hello world!</p> 

<script>...</script>

</body> 
</html>



Example (2/2)

<script type="text/javascript">

var x = document.getElementById("banner") ;
alert( x.firstChild.nodeValue ) ;

var y = document.getElementById("mytext") ;
y.firstChild.nodeValue = "Hello again...." ;

</script>



Control sequence

HTML object User action HTML event

Javascript
function

(event handler)

Javascript
function

(event handler)
Find object(s)

Read object
properties

Modify object
properties



HTML events

<body>

<body>

Form elements

Form elements

Form elements

Form elements

Form elements

Form elements

Any element – keyboard

Any element – keyboard

Any element – keyboard

Any element – mouse

Any element – mouse

Any element – mouse

Any element – mouse

Any element – mouse

Any element – mouse

Any element – mouse

onload 

onunload 

onchange 

onsubmit 

onreset 

onselect 

onblur 

onfocus 

onkeydown 

onkeypress 

onkeyup 

onclick 

ondblclick 

onmousedown 

onmousemove 

onmouseover 

onmouseout 

onmouseup 



Exercise 6

• Create an HTML page with variable-color background.

• The background color is selected by the user by 
clicking on suitable text sentences

Green

YellowYellow

YellowBlue



Form submission

• The submission of FORM data may be intercepted by 
the onsubmit event

• The event procedure may check for any errors

– If everything is ok, the function returns true -> the browser 
takes the form action

– In case of errors, the function returns false -> the form is 
not submitted



Exercise 7

• Create an HTML form for entering a 
username/password pair

• Do not allow the user to press the submit button 
unless:

– Both username and password are present

– Password is more than 4 characters long



Exercise 7b

• Create an HTML form for entering a 
username/password pair

• Do not allow the user to press the submit button 
unless:

– Both username and password are present

– Password is more than 4 characters long

• Whenever the user commits an error, display a 
message just besides the text box



Exercise 8

• Create an HTML form for selecting an item from a list 
of categories, including a “Other...” option

• If the user selects “Other...”, then he must fill a text 
box for specifying

• Otherwise, the text box should be invisible



References

• JavaScript Tutorial, 
http://www.w3schools.com/js/default.asp

• http://www.quirksmode.org/js/contents.html

• JavaScript Reference, 
http://www.w3schools.com/jsref/default.asp 

• Standard ECMA-262 (3r d Edition - December 1999), 
http://www.ecma-
international.org/publications/standards/Ecma-
262.htm



Web development

Client-side programming

Rich Internet Applications
and AJAX

S:\slide\Computers\Programming\Languages\JavaScript\AJAX\ajax_v1.odp



Rich Internet Application

Rich Internet applications (RIA) are web 
applications that have the features and 
functionality of traditional desktop applications.
RIAs typically

transfer the processing necessary for the user 
interface to the web client

keep the bulk of the data (i.e., maintaining the 
state of the program, the data etc) back on the 
application server.



Main goals of RIAs

Most sophisticated RIAs exhibit a look and feel 
approaching a desktop environment.

Richer. User-interface behaviors not obtainable 
using only the HTML widgets available to 
standard browser-based Web applications: drag 
and drop, using a slider to change data, 
calculations performed by the client and which 
do not need to be sent back to the server, ...

More responsive. The interface behaviors are 
typically much more responsive than those of a 
standard Web browser that must always interact 
with a remote server.



Performance of RIAs

Client/Server balance. The demand for 
client and server computing resources is better 
balanced. This frees server resources, allowing 
the same server hardware to handle more 
client sessions concurrently.



Performance of RIAs

Asynchronous communication. The client 
engine can interact with the server without 
waiting for the user to perform an interface 
action such as clicking on a button or link. This 
allows the user to view and interact with the 
page asynchronously from the client engine's 
communication with the server.

Example: prefetching (an application anticipates a 
future need for certain data, and downloads it to 
the client before the user requests it)



Performance or RIAs

Network efficiency. Network traffic may be 
significantly reduced because an application-
specific client engine can be more intelligent 
than a Web browser when deciding what data 
needs to be exchanged with servers.

Less data is being transferred for each interaction, 
and overall network load is reduced.

However, use of asynchronous prefetching 
techniques can neutralize or even reverse this 
potential benefit.



AJAX definition

Asynchronous JavaScript And XML.
AJAX is a type of programming made popular in 
2005 by Google (with Google Suggest).
AJAX is not a new programming language, but 
a new way to use existing standards.
With AJAX you can create better, faster, and 
more user-friendly web applications.
AJAX is based on JavaScript and HTTP 
requests.



Key enabling technology

With AJAX, your JavaScript can communicate 
directly with the server, using the JavaScript 
XMLHttpRequest object.
By using the XMLHttpRequest object, a web 
developer can update a page with data from 
the server -- after the page has loaded!
The XMLHttpRequest object is supported in 
Internet Explorer 5.0+, Safari 1.2, Mozilla 1.0 / 
Firefox, Opera 8+, and Netscape 7.
http://www.w3.org/TR/XMLHttpRequest
/



XMLHttpRequest – the name

The name of the object is wrong, but 
maintained for historical reasons:

May receive any text-based content, not just XML
May use also HTTPS, not just HTTP protocol
May handle both Requests and Responses, of all 

HTTP methods



Standard definition
interface XMLHttpRequest {

// event handler

attribute EventListener onreadystatechange;

// state

const unsigned short UNSENT = 0;  

const unsigned short OPENED = 1;

const unsigned short HEADERS_RECEIVED = 2;

const unsigned short LOADING = 3;

const unsigned short DONE = 4;

readonly attribute unsigned short readyState;

http://www.w3.org/TR/XMLHttpRequest/#onreadystatechange
http://www.w3.org/TR/XMLHttpRequest/#unsent-state
http://www.w3.org/TR/XMLHttpRequest/#opened-state
http://www.w3.org/TR/XMLHttpRequest/#headers-received-state
http://www.w3.org/TR/XMLHttpRequest/#loading-state
http://www.w3.org/TR/XMLHttpRequest/#done-state
http://www.w3.org/TR/XMLHttpRequest/#readystate


Standard definition
// request

void open(in DOMString method, in DOMString url);

void open(in DOMString method, in DOMString url, in boolean async);

void open(in DOMString method, in DOMString url, in boolean async, in 

DOMString user);

void open(in DOMString method, in DOMString url, in boolean async, in 

DOMString user, in DOMString password);

void setRequestHeader(in DOMString header, in DOMString value);

void send();

void send(in DOMString data);

void send(in Document data);

void abort();

http://www.w3.org/TR/XMLHttpRequest/#open
http://www.w3.org/TR/XMLHttpRequest/#open
http://www.w3.org/TR/XMLHttpRequest/#open
http://www.w3.org/TR/XMLHttpRequest/#open
http://www.w3.org/TR/XMLHttpRequest/#setrequestheader
http://www.w3.org/TR/XMLHttpRequest/#send
http://www.w3.org/TR/XMLHttpRequest/#send
http://www.w3.org/TR/XMLHttpRequest/#send
http://www.w3.org/TR/XMLHttpRequest/#abort


Standard definition
// response

DOMString getAllResponseHeaders();

DOMString getResponseHeader(in DOMString header);

readonly attribute DOMString responseText;

readonly attribute Document responseXML;

readonly attribute unsigned short status;

readonly attribute DOMString statusText;

};

http://www.w3.org/TR/XMLHttpRequest/#getallresponseheaders
http://www.w3.org/TR/XMLHttpRequest/#getresponseheader
http://www.w3.org/TR/XMLHttpRequest/#responsetext
http://www.w3.org/TR/XMLHttpRequest/#responsexml
http://www.w3.org/TR/XMLHttpRequest/#status
http://www.w3.org/TR/XMLHttpRequest/#statustext


Request states

UNSENT = 0
The request is not initialized

OPENED = 1
The request has been set up

HEADERS_RECEIVED = 2
The request has been sent

LOADING = 3
The request is in process

DONE = 4
The request is complete



State transition diagram

UNSENT
OPENED
not sent

HEADERS
_RECEIVED

OPENED
sent

LOADING
DONE

not error
DONE
error



State Transition Diagram

2014/2015 Ambient intelligence: technology and design 104



XMLHttpRequest properties

onreadystatechange
stores the function that will process the response 

from a server
xmlHttp.onreadystatechange = 

function() { ... }

readyState
holds the status of the server’s response. Each 

time readyState changes, the 
onreadystatechange function will be executed.

responseText
the data sent back from the server can be 

retrieved with the responseText property



Methods

open(method, url, async, user, password)
method = “GET”, “POST”
url = complete URL to request
async = true/false (optional, default=true)
user, password (optional)
Interrupts any on-going send()

setRequestHeader(header, value)
Adds a new header to the HTTP Request
Content-Type is one common header to send

Examples: text/xml, application/xml



Methods

send(data)
Initiates the request
data = HTTP request body (optional)

May be a Document or DOMString

The URL was already given in open()
send() terminates immediately if async==true, but 

transfer continues in the background
Generates readystatechange events

send() transfers data synchronously if 
async==false



Methods

getAllResponseHeaders()
Return all response headers as a single string, with 

headers separated by CR+LF
Invalid if UNSENT or OPENED

getResponseHeader(header)
Returns the value of a single header
Invalid if UNSENT or OPENED



Receiving the response body

responseText of type DOMString
If LOADING (partial body) or DONE
Allow access to a “raw string” of the response 

body

responseXML of type Document
Only if DONE
For text/xml (or application/xml or *+xml) content 

types, otherwise null
Allows access to the DOM of the XML document



Example

Create a standard HTML form with two text 
fields: username and time.
The username field will be filled in by the user 
and the time field will be filled in using AJAX.
No submit button is needed.



Example

<html>

<body> <form name="myForm">

Name: <input type="text" name="username" />

Time: <input type="text" name="time" />

</form> </body>

</html>



Creating an XMLHttpRequest 
object

<script type="text/javascript">

function ajaxFunction()

{

var xmlHttp;

xmlHttp=new XMLHttpRequest();

...

}

</script>



Supporting all browsers
<script type="text/javascript">

function ajaxFunction()

{

var xmlHttp;

try {

// Firefox, Opera 8.0+, Safari

xmlHttp=new XMLHttpRequest();

}

catch (e) {

// Internet Explorer

try { // Internet Explorer 6.0+

xmlHttp=new ActiveXObject("Msxml2.XMLHTTP");

}

catch (e) {

try { // Internet Explorer 5.5+

xmlHttp=new ActiveXObject("Microsoft.XMLHTTP");

}

catch (e) {

alert("Your browser does not support AJAX!");

return false;

}

}

}

}

</script>



Calling the server

xmlHttp.open("GET","time.jsp",true);

xmlHttp.send(null);



Processing the response

xmlHttp.onreadystatechange=function()

{

if(xmlHttp.readyState==4)

{

// Get the data from the server's response

document.myForm.time.value=xmlHttp.responseText;

}

}



Attaching to an event

<form name="myForm">

Name: <input type="text"

onkeyup="ajaxFunction();" name="username" />

Time: <input type="text" name="time" />

</form>



Complete example
<html>

<body>

<script type="text/javascript">

function ajaxFunction()

{

var xmlHttp=new XMLHttpRequest();

xmlHttp.onreadystatechange=function()

{

if(xmlHttp.readyState==4)

{

document.myForm.time.value=xmlHttp.responseText;

}

}

xmlHttp.open("GET","time.asp",true);

xmlHttp.send(null);

}

</script>

<form name="myForm">

Name: <input type="text"

onkeyup="ajaxFunction();" name="username" />

Time: <input type="text" name="time" />

</form> </body>

</html>



AJAX architecture



AJAX 
behavior



Exercise 1

Create an auto-complete feature for entering 
the name in a FORM
For every typed letter, an associated text must 
be updated, reflecting the list of all possible 
names with those initial(s)
Once submitted, the name adds up to the list
Clicking on the suggestion auto-fills the box

Name Jo Suggestions: Joe, Joseph, John

SUBMIT



Exercise 2

Create a FORM for entering the name of a city, 
based on two drop-down menus (<select> 
tags).

The first <select> contains the list of all provinces
(AO, BO, CN, MI, TO, ...)

The second <select> contains the list of all cities
in the province

Every time the user changes the province, then 
the list of cities MUST be updated
The form may be submitted only if information 
is complete



References

http://en.wikipedia.org/wiki/Rich_Internet_Appl
ications 
http://en.wikipedia.org/wiki/AJAX 
http://www.w3schools.com/ajax/ 
http://www.w3.org/TR/XMLHttpRequest/ 



License

• These slides are distributed under a Creative Commons license “Attribution 
– NonCommercial – ShareAlike (CC BY-NC-SA) 3.0”

• You are free to:
– Share — copy and redistribute the material in any medium or format 
– Adapt — remix, transform, and build upon the material 
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and 

indicate if changes were made. You may do so in any reasonable manner, but not in 
any way that suggests the licensor endorses you or your use. 

– NonCommercial — You may not use the material for commercial purposes. 
– ShareAlike — If you remix, transform, or build upon the material, you must 

distribute your contributions under the same license as the original. 
– No additional restrictions — You may not apply legal terms or technological 

measures that legally restrict others from doing anything the license permits. 

• http://creativecommons.org/licenses/by-nc-sa/3.0/

2014/2015 Ambient intelligence: technology and design 123

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

