
Git
AN INTRODUCTION

Introduction to Git as a version control system:

concepts, main features and practical aspects.

How do you share and save data?

• “I’m working solo… and I only have one

computer”

3/7/2016 Version Control with Git 2

What I need:

- backup;

- different saved versions;

- early and frequently

saving.

What I can use:

- external hard drives;

- dedicated folder;

- Dropbox folder;

- …

How do you share and save data?

• “I’m working solo… and I only have one

computer”

3/7/2016 Version Control with Git 3

What if…

- … I forget to save a specific version

and then I need it?

- … I delete/loose a previous version?

How do you share and save data?

• “I’m working solo… and I have more than one

computer”

3/7/2016 Version Control with Git 4

What I need:

- backup;

- different saved versions;

- early and frequently saving;

- conventions on file names.

What I can use:

- USB memory sticks;

- external hard drives;

- Dropbox folder;

- shared folder;

- …

How do you share and save data?

• “I’m working solo… and I have more than one

computer”

3/7/2016 Version Control with Git 5

What if…

- … I forget to save a specific version

and then I need it?

- … I delete/loose a previous version?

- … I have different projects in the

“shared” workspace?

- … I forget to copy one version

between computers?

How do you share and save data?

• “I’m working in team”

3/7/2016 Version Control with Git 6

What I need:

- backup;

- different saved versions;

- early and frequently saving;

- shared conventions on file

names.

What I can use:

- USB memory sticks;

- external hard drives;

- Dropbox folder;

- e-mails;

- …

How do you share and save data?

• “I’m working in team”

3/7/2016 Version Control with Git 7

Other issues:

- who has the latest version?

- who has the right to edit?

- how to ensure that everyone

sees up-to-date versions of

everything?

- how to handle conflicts?

What if…

- … a team member forgets to save a

specific version and then someone

else needs it?

- … someone deletes/looses a version?

- … someone forgets to share a specific

version of the projects?

Version Control Systems

Three generations:

1. Local (RCS, SCCS)

2. Centralized (CVS, Subversion, Team Foundation
Server)

3. Distributed (Git, Mercurial)

3/7/2016 Version Control with Git 8

Record changes to a file or a set of files over time so that
you can recall specific versions later

NOW

Basic Concepts

Repository

– place where you store all your
work

– contains every version of your work that has ever
existed

• files

• directories layout

• history

– can be shared by the whole team

3/7/2016 Version Control with Git 9

Basic Concepts

Working copy

– a snapshot of the repository used
for… working

– the place where changes happens

– private, not shared by the team

– it also contains some metadata so that it can keep
track of the state of things

• has a file been modified?

• is this file new?

• has a file been deleted?

3/7/2016 Version Control with Git 10

Basic Concepts

Commit

– the operation that
modifies the repository

– atomically performed by modern version control
tools

• the integrity of the repository is assured

– it is typical to provide a log message (or comment)
when you commit

• to explain the changes you have made

• the message becomes part of the history of the repository

3/7/2016 Version Control with Git 11

Basic Concepts

Update

– update the working copy
with respect to the
repository

• apply changes from the repository

• merge such changes with the ones you have made to your
working copy, if necessary

3/7/2016 Version Control with Git 12

Centralized Version Control

• one central repository

• client-server relationship

3/7/2016 Version Control with Git 13

Distributed Version Control

• clients and server have the full copy of the repository
– local repositories clone a remote repository

• it is possible to have more than one server

3/7/2016 Version Control with Git 14

More Basic Concepts

Push

– copy changesets from a
local repository instance
to a remote one

• synchronization between two repository instances

3/7/2016 Version Control with Git 15

More Basic Concepts

Pull

– copy changesets from a
remote repository
instance to a local one

• synchronization between two repository instances

3/7/2016 Version Control with Git 16

Introducing… Git

• Distributed Version Control System

• Born
– on 2005 for the Linux kernel project

– to be used via command line

• Website: http://git-scm.com

• Highlights:
– free and open source

– strong support for non-linear development

– fully distributed

– efficient handling of large projects

– cryptographic authentication of history

3/7/2016 Version Control with Git 17

http://git-scm.com/

Who uses Git?

3/7/2016 Version Control with Git 18

Getting started with Git

• Standard installations

– http://git-scm.com/downloads

• Available for all the platform

• Git Graphical Applications

– http://git-scm.com/downloads/guis

• For this course, Git is

– integrated in PyCharm

– already installed on the LADISPE computers

3/7/2016 Version Control with Git 19

http://git-scm.com/downloads
http://git-scm.com/downloads/guis

Installing Git

• Windows
– download and install Git from http://git-

scm.com/downloads

• Linux
– check if it is already installed

• open a terminal and type “git”

– otherwise, install it from your package manager or via
http://git-scm.com/downloads

• Mac
– check if it is already installed

• open a terminal and type “git”

– otherwise, install it from http://git-scm.com/downloads

3/7/2016 Version Control with Git 20

http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads

Git by Example

Marco and Dave work for the same company, but

in two different countries.

They have to realize a new software project, so

they decided to make it in Python and to use Git

for version control.

3/7/2016 Version Control with Git 21

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

Git by Example

Marco starts the project by creating a new Git
repository on the central server.
He goes into the project directory and types:

to initialize an empty Git repository for the project.

3/7/2016 Version Control with Git 22

git init --bare myproject.git

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

Git by Example

When the central repository is ready, Dave create

a folder named myproject on his computer and

initializes a repository in it:

3/7/2016 Version Control with Git 23

git init

Git by Example

• initializes an empty Git repository inside an

existing folder

• creates a .git directory inside it

• without parameters, typically

– on the server, it is used with the --bare parameter

3/7/2016 Version Control with Git 24

git init

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

Git by Example

Dave writes some code in the myproject folder.

Before committing, Dave needs to really put the
created file under version control, by adding the
file to the Staging area:

3/7/2016 Version Control with Git 25

git add main.py

The Staging Area

• A sort of loading dock

• It can contain things that are neither in the working
copy nor in the repository instance

• Also called “index”

3/7/2016 Version Control with Git 26

STAGING AREA

The Staging Area: an example

• Imagine to modify an existing file in the working

copy

• The file is marked as “modified”

3/7/2016 Version Control with Git 27

STAGING AREA

The Staging Area: an example

• Before committing, the modified file needs to be
“staged”
– i.e., add a snapshot of it in the staging area

• Modified data has been marked in its current version to
go into the next commit snapshot

3/7/2016 Version Control with Git 28

STAGING AREA

ADD

The Staging Area: an example

• Then, changes can be “committed”

– i.e., take the file from the staging area and store
permanently the snapshot in the local repository

3/7/2016 Version Control with Git 29

STAGING AREA

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

Git by Example

If Dave wants permanently to exclude from

version control some files in the project folder, he

can add them in the .gitignore file

– such files and folders will not be staged

3/7/2016 Version Control with Git 30

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

Git by Example

After adding main.py to the Staging area, Dave

can commit the file to the local repository:

3/7/2016 Version Control with Git 31

git commit -m “initial commit”

Git by Example

• store the current snapshot in the local
repository

• -m “put a message here”
– perform the commit with a log message

– useful to know what you have committed

• - a
– a useful parameter

– it performs an add for modified files, too
• useless at this point

3/7/2016 Version Control with Git 32

git commit -m “initial commit”

Git by Example

Dave is ready to load the data to the remote

repository. He has to specify what is the remote

server to use:

3/7/2016 Version Control with Git 33

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

git remote add origin http://centralserver.com/myproject.git

Git by Example

• add a new remote repository
– multiple remotes can exists

• for each remote, a name and an address is
specified
– origin is the “standard” name for indicating the

principal remote

– the address can be in the format http(s):// or git://

• remotes can also be removed, renamed, etc.

3/7/2016 Version Control with Git 34

git remote add origin http://centralserver.com/myproject.git

Git by Example

Now Dave can push the data to the remote
repository:

where origin is the remote name and master is the
default branch name

3/7/2016 Version Control with Git 35

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

git push -u origin master

Git by Example

• Git pushes only to matching branches
– for every branch that exists on the local side, the remote

side is updated if a branch of the same name already
exists there
• this behavior will change with Git 2.0

– you have to push the branch explicitly the first time

• -u
– set other information useful for other commands (e.g.,

pull)

• After the first time, you can simply use:
– git push

3/7/2016 Version Control with Git 36

git push -u origin master

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

Git by Example

Marco starts working on the project and clones the
remote repository on his computer:

Now Marco has the code!

3/7/2016 Version Control with Git 37

git clone http://centralserver.com/myproject.git

Git by Example

• creates a directory named myproject

• initializes a .git directory inside it

• pulls down all the data for that repository

• checks out a working copy of the latest version

If you want to clone the repository into a

directory with another name, you can specify that

as:

3/7/2016 Version Control with Git 38

git clone http://centralserver.com/myproject.git

git clone http://centralserver.com/myproject.git first_project

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

Git by Example

Marco wants to see the details of what Dave did:

The result will be something like:

3/7/2016 Version Control with Git 39

git log

commit bcb39bee268a92a6d2930cc8a27ec3402ebecf0d

Author: Dave <dave@email.co.uk>

Date: Wed Mar 23 10:06:13 2015

initial commit

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

Git by Example

Marco wants to see the details of what Dave did:

The result will be something like:

3/7/2016 Version Control with Git 40

git log

commit bcb39bee268a92a6d2930cc8a27ec3402ebecf0d

Author: Dave <dave@email.co.uk>

Date: Wed Mar 23 10:06:13 2015

initial commit

bcb39bee268a92a6d2930cc8a27ec3402ebecf0d

SHA-1 hash for data integrity

Git by Example

• At this point, Marco edits the source code and
saves

• To see the pending changes, he can use:
– git status

• To see the difference between his version and
the previous one, he can use:
– git diff (--cached, to include staged files)

• Marco decides to commit and to push his work

3/7/2016 Version Control with Git 41

git commit -a -m “added new functionalities”

git push

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

Git by Example

Meanwhile, Dave found some bugs in the code.

He looks for update on the central server and get

it (if any):

3/7/2016 Version Control with Git 42

git pull

Pull and Fetch in Git

Fetch

– copy changesets from a
remote repository
instance to a local one

– previously, we called it “pull”

Pull

– perform fetch

– update the working copy

3/7/2016 Version Control with Git 43

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

Git by Example

However, no new data is available since Marco

has not yet pushed his changes.

So, Dave fixes the bugs, and commits:

3/7/2016 Version Control with Git 44

git commit -a -m “bug fixing”

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

Git by Example

After some time, Dave tries to push his changes

but something goes wrong

3/7/2016 Version Control with Git 45

git push

To http://centralserver.com/myproject

! [rejected] master -> master (non-fast-forward)

error: failed to push some refs to ‘http://centralserver.com/myproject’

Git by Example

• What happens?

– Git is not allowing Dave to push his changes because
Marco has already pushed something to the master
branch

• Solution:

– Dave has to do a pull, to bring in changes before
pushing his modifications

• Two possible scenarios:

– merging of files goes smoothly;

– merging of files generates conflicts.

3/7/2016 Version Control with Git 46

Git by Example

• Merge with conflicts

• Git includes both Marco’s code and Dave’s code

with conflict markers to delimit things

3/7/2016 Version Control with Git 47

From http://centralserver.com/myproject

b19f36c..b77378f master -> origin/master

Auto-merging main.py

CONFLICT (content): Merge conflict in main.py

Automatic merge failed; fix conflicts and then commit the result.

<<<<<<< HEAD

Marco’s code here

=======

Dave’s code here

>>>>>>> b77378f6eb0af44468be36a085c3fe06a80e0322

SOMEWHERE IN THE USA

MARCO, ITALY DAVE, ENGLAND

Git by Example

After (manually) resolving these conflicts, Dave is

able to push the changes:

3/7/2016 Version Control with Git 48

git push

Other Useful Commands

• Operations on files

– Remove: git rm [filename]

– Move/rename: git mv [file-from] [file-to]

– Unstage some staged files: git reset HEAD [filename-
list]

– Unmodify a modified file: git checkout -- [filename]

• Change the last commit

– git commit --amend

3/7/2016 Version Control with Git 49

Other Useful Commands

• Operations on remotes

– List: git remote (-v, to show the URLs)

– Add: git remote add [shortname] [url]

– Inspect: git remote show [remote-name]

– Rename: git remote rename [old-name] [new-name]

– Remove: git remote rm [remote-name]

3/7/2016 Version Control with Git 50

Tags and Branches in a Nutshell

• Local and remote

• Do not push automatically

[Image from http://nvie.com/posts/a-successful-git-branching-model/]

3/7/2016 Version Control with Git 51

http://nvie.com/posts/a-successful-git-branching-model/

Tags… in brief

• useful to mark release points

• two types:
– lightweight

– annotated (more complete)

• commands:
– git tag, shows the available existing tags

– git tag [tag-name], creates a lightweight tag

– git tag -a [tag-name] -m [message]‚ creates an
annotated tag

– tag show [tag-name], shows the tag data

3/7/2016 Version Control with Git 52

Branches… in brief

• used to develop features isolated from each other
• the master branch is the “default” branch when you

create a repository
– you should use other branches for development and

merge them back to the master branch upon completion

• really lightweight in Git
• commands:

– git branch [branch-name], create a new branch

– git branch, lists all existing branches

– git checkout [branch-name], switches to the selected
branch

– git branch -d [branch-name], removes the selected branch

3/7/2016 Version Control with Git 53

Hosted Git

• To have (at least) one remote repository

– alternative: set up your own Git server!

• Most popular:

– GitHub, https://github.com/

– Bitbucket, https://bitbucket.org/

– GitLab, https://about.gitlab.com/gitlab-com/

– Sourceforge, http://sourceforge.net/

– CodePlex (by Microsoft), https://www.codeplex.com/

3/7/2016 Version Control with Git 54

https://github.com/
https://bitbucket.org/
https://about.gitlab.com/gitlab-com/
http://sourceforge.net/
https://www.codeplex.com/

GitHub

• Slightly different than other code-hosting sites
– instead of being primarily based on the project, it is

user-centric

– social coding

• A commercial company
– charges for accounts that maintain private repository

– free account to host as many open source project as
you want

– free Micro plan for students
• 5 private repositories, unlimited public repositories

• https://education.github.com

3/7/2016 Version Control with Git 55

http://education.github.com/

Bitbucket

• Similar to GitHub

• Less used than GitHub, right now

• Mercurial support

• A commercial company
– free private and public repositories for small team

(up to 5 private collaborators)

– charges for project involving bigger team

– free for academia (also for students)
• unlimited public and private repositories

• unlimited users for single projects

3/7/2016 Version Control with Git 56

GitHub Pages

• Website for your (GitHub) repository

– https://pages.github.com/

• We will use it for hosting your project website

– deliverables, video, etc.

– your website will be reachable from
http://ami-2016.github.io/your-project-name

• FAQ

– https://help.github.com/categories/github-pages-
basics/

3/7/2016 Version Control with Git 57

https://pages.github.com/
https://help.github.com/categories/github-pages-basics/

Homework(s)

• Create a personal GitHub account

– you can also ask for a “student discount” at
https://education.github.com

– we will require your username to set up your team
repositories for final projects

• report your GitHub username on the shared Google doc!

• Try Git!

– http://try.github.io/

– 15 minutes tutorial

3/7/2016 Version Control with Git 58

https://education.github.com/
http://try.github.io/

References

• Git Reference
– http://gitref.org/

• Git - the simple guide
– http://rogerdudler.github.io/git-guide/

• Git Documentation
– http://git-scm.com/docs

• Pro Git (online book)
– http://git-scm.com/book

• Version Control by Example (online book)
– http://www.ericsink.com/vcbe/

3/7/2016 Version Control with Git 59

http://gitref.org/
http://rogerdudler.github.io/git-guide/
http://git-scm.com/docs
http://git-scm.com/book
http://www.ericsink.com/vcbe/

References

• Try Git!
– http://try.github.io/

• Various Git resources
– https://help.github.com/articles/what-are-other-

good-resources-for-learning-git-and-github

• A successful Git branching model
– http://nvie.com/posts/a-successful-git-branching-

model/

• Some Git (graphical) clients
– http://git-scm.com/downloads/guis

3/7/2016 Version Control with Git 60

http://try.github.io/
https://help.github.com/articles/what-are-other-good-resources-for-learning-git-and-github
http://nvie.com/posts/a-successful-git-branching-model/
http://git-scm.com/downloads/guis

Questions?
01QZP AMBIENT INTELLIGENCE

Luigi De Russis

luigi.derussis@polito.it

License

• This work is licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 3,0)” License.

• You are free:
– to Share - to copy, distribute and transmit the work
– to Remix - to adapt the work

• Under the following conditions:
– Attribution - You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they endorse you
or your use of the work).

– Noncommercial - You may not use this work for commercial purposes.
– Share Alike - If you alter, transform, or build upon this work, you may

distribute the resulting work only under the same or similar license to this
one.

• To view a copy of this license, visit
http://creativecommons.org/license/by-nc-sa/3.0/

3/7/2016 Version Control with Git 62

http://creativecommons.org/license/by-nc-sa/3.0/

