
Introduction

to JavaScript
CORE JAVASCRIPT

Laura Farinetti - DAUIN

What and why JavaScript?

• JavaScript is a lightweight, interpreted programming
language with object-oriented capabilities primarily
used in web browsers for dynamic web pages and
user interaction
– JavaScript made its first appearance in Netscape 2.0 in

1995

– Later standardized by ECMA (www.ecma.ch): ECMAScript

• JavaScript is one of the 3 languages all web
developers must learn
– HTML to define the content of web pages

– CSS to specify the layout of web pages

– JavaScript to program the behavior of web pages

3/27/2019 JavaScript 2

http://www.ecma.ch/

What can JavaScript do for us?

• JavaScript can handle events (mouse click, page
load, …)

• JavaScript can change
– HTML content

– HTML attributes

– HTML styles (CSS)

• JavaScript can validate form data

• JavaScript can manage media and graphics

• JavaScript can work with HTML5 (HTML5 APIs)

3/27/2019 JavaScript 3

http://www.w3schools.com/js/js_intro.asp

esempi1-4.html

http://www.w3schools.com/js/js_intro.asp

Short history

• 1995
– May: “Mocha” is invented in Netscape by Brendan Eich

– September: renamed to LiveScript

– December: renamed to Javascript (because Java was
popular)

• 1996: JavaScript is taken to standardization in
ECMA
– From now on ECMAScript is the specification, Javascript is

an implementation (ActionScript is another implementation)

• 1997: ECMA-262 (ECMAScript)

• 1998: ECMAScript 2

• 1999: ECMAScript 3

3/27/2019 JavaScript 4

Short history
• 2005: Mozilla and Macromedia started work on

ECMAScript 4 (feature rich and a very major leap
from ECMAScript 3)

• Yahoo and Microsoft opposed the forming standard,
and ECMAScript 3.1 was the compromise

• 2009: Opposing parties meet in Oslo and achieve an
agreement, and ES3.1 is renamed to ES5
– In the spirit of peace and agreement, the new Javascript

long term agenda is named “Harmony”

• 2015: ES6 (part of the “Harmony” umbrella)
– Starting with ES6 version names will be based on the year

of release, so ES6 is ES2015 and ES7 should be ES2016

3/27/2019 JavaScript 5

JavaScripts

• A JavaScript consists of JavaScript statements
placed within the <script>... </script> HTML tags in a
web page

• The <script> tag containing JavaScript code can be
placed anywhere in a web page
– In the head or the body section

3/27/2019 JavaScript 6

<html>

<body>

<script language="javascript" type="text/javascript">

<!--

document.write("Hello World!")

//-->

</script>

</body>

</html>

prova.html

Where to embed JavaScript code?

• In the head section

– Scripts to be executed when they are called, or when

an event is triggered, go in the head section

– When you place a script in the head section, you will

ensure that the script is loaded before anyone uses it

• In the body section

– Scripts to be executed when the page loads go in the

body section

– When you place a script in the body section it

generates the content of the page

3/27/2019 JavaScript 7

What can JavaScript do?

• Generate dialog boxes

• Redirect a page

• Open new browser windows (pop-ups)

• Intercept mouse events
– Clicks on links, buttons, ...

– Mouse-overs, …

• Read user input in forms

• Modify HTML pages
– Add/remove content

– Change images

– Modify form controls

3/27/2019 JavaScript 8

What you need to know…

• JS variables and expressions

• JS language constructs (if, while, ...)

• JS objects
– The most important built-in objects

• Interaction with the user
– Mouse, keyboard

• Interaction with the browser
– Windows, pages

• Interaction with the page: the Document Object
Model (DOM)

3/27/2019 JavaScript 9

Summary

• Core JavaScript
– Lexical structure

– Types, values, and variables

– Expressions and operators

– Statements

– Objects

– Arrays

– Functions

– Classes and modules

– Pattern matching with regular expressions

3/27/2019 JavaScript 10

Summary

• Client-Side JavaScript

– JavaScript in web browsers

– The window object

– Scripting documents (DOM)

– Scripting CSS

– Handling events

– Client-Side Storage

– Scripted Media and Graphics

– HTML5 APIs

3/27/2019 JavaScript 11

JavaScript basics

• Syntax is similar to C language

• Case-sensitive language

• Uses the Unicode character set

• Ignores spaces and line breaks

• Semi-colons (at the end of a line) can be omitted

• Comments

3/27/2019 JavaScript 12

// This is a single-line comment.

/* This is also a comment */ // and here is another comment.

/*

* This is yet another comment.

* It has multiple lines.

*/

Literals

• Data values that appear directly in a program

• Examples

3/27/2019 JavaScript 13

12 // The number twelve

1.2 // The number one point two

"hello world" // A string of text

'Hi' // Another string

true // A Boolean value

false // The other Boolean value

/javascript/gi // A "regular expression" literal

(for pattern matching)

null // Absence of an object

Types, values and variables

• JavaScript types can be divided into two categories

– Primitive types: numbers, strings, Booleans and the special

JavaScript values “null” and “undefined”

– Object types: any JavaScript value that is not a primitive

type

• An object (i.e., a member of the type object) is a

collection of properties where each property has a

name and a value

• JavaScript defines two special kind of objects

– an “array”: an ordered collection of numbered values

– a “function”: an object that has executable code associated

3/27/2019 JavaScript 14

Types, values and variables

• In JavaScript all variables must be declared before
their use with the “var” keyword

• JavaScript variables are untyped
– You can assign a value of any type to a variable, and you

can later assign a value of a different type to the same
variable

• JavaScript uses lexical scoping
– Variables declared outside of a function are global

variables and are visible everywhere in a JavaScript
program

– Variables declared inside a function have function scope
and are visible only to code that appears inside that
function

3/27/2019 JavaScript 15

Numbers
• Unlike many languages, JavaScript does not make a

distinction between integer values and floating-point
values

• All numbers in JavaScript are represented as
floating-point values
– 64-bit floating-point format defined by the IEEE 754

standard

3/27/2019 JavaScript 16

0

3

10000000

0xff // hexadecimal

0xCAFE911 // hexadecimal

3.14

2345.789

.333333333333333333

6.02e23 // 6.02 × 1023

1.4738223E-32 // 1.4738223 × 10−32

Arithmetic in JavaScript
• Numeric operators: + - * / %

• Set of functions and constants defined as properties
of the Math object

3/27/2019 JavaScript 17

Math.pow(2,53) // => 9007199254740992: 2 to the power 53

Math.round(.6) // => 1.0: round to the nearest integer

Math.ceil(.6) // => 1.0: round up to an integer

Math.floor(.6) // => 0.0: round down to an integer

Math.abs(-5) // => 5: absolute value

Math.max(x,y,z) // Return the largest argument

Math.min(x,y,z) // Return the smallest argument

Math.random() // Pseudo-random number x where 0 <= x < 1.0

Math.PI // π: circumference of a circle / diameter

Math.E // e: The base of the natural logarithm

Math.sqrt(3) // The square root of 3

Math.pow(3, 1/3) // The cube root of 3

Math.sin(0) // Trigonometry: also Math.cos, Math.atan, etc.

Math.log(10) // Natural logarithm of 10

Math.log(100)/Math.LN10 // Base 10 logarithm of 100

Math.log(512)/Math.LN2 // Base 2 logarithm of 512

Text

• A string is an ordered sequence of 16-bit values,
each of which typically represents a Unicode
character

• The length of a string is the number of 16-bit values
it contains

• JavaScript’s strings (and arrays) use zero-based
indexing: the first 16-bit value is at position 0

• The empty string is the string of length 0

• JavaScript does not have a special type that
represents a single element of a string (character)
– To represent a single 16-bit value, simply use a string that

has a length of 1

3/27/2019 JavaScript 18

String literals

• Examples

• In client-side JavaScript programming, JavaScript

code may contain strings of HTML code, and HTML

code may contain strings of JavaScript code

3/27/2019 JavaScript 19

"" // The empty string: it has zero characters

'testing'

"3.14"

'name="myform"'

"Wouldn't you prefer O'Reilly's book?"

"This string\nhas two lines"

"π is the ratio of a circle's circumference to its diameter"

'You\'re right, it can\'t be a quote' // escape sequence

<button onclick="alert('Thank you')">Click Me</button>

String operators, properties and

methods
• Concatenation

• The only property is
– .length (the number of characters in the string)

• Many general methods
– .charAt(), .concat(), .indexOf(), .localeCompare(), .match(),

.replace(), .search(), .slice(), .split(), .substr(), .substring(),

.toLowerCase(), .toUpperCase(), .toString(), .valueOf(), …

• Many methods specific for writing HTML

3/27/2019 JavaScript 20

msg = "Hello, " + "world"; // Produces the string "Hello,

world"

greeting = "Welcome to my blog," + " " + name;

String methods for HTML formatting

• Methods that returns a copy of the string wrapped
inside the appropriate HTML tag
– Warning: not standard methods, may not work as expected

in all browsers

• List of main methods
– .big(), .small(),

.italic(), .bold(),

.fixed(), .sub(), .sup()

– .fontcolor(c),
.fontsize(s)

– .anchor(“name”),
.link(“url”)

3/27/2019 JavaScript 21

var str = "Hello World!";

document.write(str);

document.write("
");

str = str.fontcolor("red");

document.write(str + "
");

str = str.fontsize(7);

document.write(str);

Main Javascript operators

• Numeric operators
+ - * / %

• Increment operators
++ --

• Assignment operators
= += -= *= /= %=

• String operator
+ (concatenation)

• Comparison operators
== (same value) === (same value and same type)

!= > < >= <=

• Boolean and Logic operators
&& (logical “and”) || (logical “or”) ! (logical “not”)

3/27/2019 JavaScript 22

Statements

• Conditionals (e.g. if, switch)

– Make the JavaScript interpreter execute or skip other

statements depending on the value of an expression

• Loops (e.g. while, for)

– Execute other statements repetitively

• Jumps (e.g. break, return, throw)

– Cause the interpreter to jump to another part of the

program

3/27/2019 JavaScript 23

If statement

3/27/2019 JavaScript 24

if (condition)

{

...code...

}

if (condition)

{

...code if true...

}

else

{

...code if false...

}

if (condition1)

{

...code if 1 true...

}

else if (condition2)

{

...code if 2 true...

}

else

{

...if both false...

}

Choice statement

3/27/2019 JavaScript 25

switch(n)

{

case 1:

code block 1

break

case 2:

code block 2

break

default:

code to be executed if n is

different from case 1 and 2

}

Loop statements

3/27/2019 JavaScript 26

for (var=startvalue; var<=endvalue; var=var+increment)

{

code to be executed

}

while (condition_is_true)

{

code to be executed

}

do {

code to be executed

} while (condition_is_true)

Jump statements

3/27/2019 JavaScript 27

while (...) // or for

{

code

break

code

}

while (...) // or for

{

code

continue

code

}

Objects

• An object is a composite value
– It aggregates multiple values (primitive values or other objects)

and allows to store and retrieve those values by name

– Unordered collection of properties, each of which has a name
and a value

• Property names are strings: objects map strings to values
– Similar to fundamental data structure called “hash”, “hashtable”,

“dictionary” or “associative array”

• However an object is more than a simple string-to-value
map: it also inherits the properties of another object,
known as its “prototype”
– The methods of an object are typically inherited properties, and

this “prototypal inheritance” is a key feature of JavaScript

3/27/2019 JavaScript 28

Object example

• All cars have the same properties, but the
property values differ from car to car

• All cars have the same methods, but the
methods are performed at different times

3/27/2019 JavaScript 29

Objects

• JavaScript objects are dynamic: properties can

usually be added and deleted

• Any value in JavaScript that is not a string, a

number, true, false, null, or undefined is an object

• The most common operations to do with objects are

create them and set, query, delete, test, and

enumerate their properties

– ES2015 added several advanced operations on objects

3/27/2019 JavaScript 30

Arrays

• An array is an ordered collection of values
– Each value is called an element, and each element has a

numeric position in the array, known as its index

• JavaScript arrays are untyped: an array element
may be of any type, and different elements of the
same array may be of different types

• Creating arrays
– With array literals

– With the Array() constructor

• Reading and Writing Array Elements
– Access to an element of an array: [] operator

3/27/2019 JavaScript 31

Examples

3/27/2019 JavaScript 32

var empty = []; // An array with no elements

var primes = [2, 3, 5, 7, 11]; // An array with 5 numeric elements

var misc = [1.1, true, "a"]; // 3 elements of various types

var base = 1024; // The values in an array literal need

var table = [base, base+1, base+2, base+3]; // not be constants

var b = [[1,{x:1, y:2}], [2, {x:3, y:4}]]; // can contain object literals

// or other array literals

var count = [1,,3]; // An array with 3 elements, the middle one undefined.

var a = new Array(); // An array with no elements

var a = new Array(10);

var a = new Array(5, 4, 3, 2, 1, "testing, testing");

var a = ["world"]; // Start with a one-element array

var value = a[0]; // Read element 0

a[1] = 3.14; // Write element 1

i = 2;

a[i] = 3; // Write element 2

a[i + 1] = "hello"; // Write element 3

a[a[i]] = a[0]; // Read elements 0 and 2, write element 3

a.length // => 4

Array methods

• See references
– join()

– reverse()

– sort()

– concat()

– slice()

– splice()

– push() and pop()

– unshift() and shift()

– toString()

• Several more in ES2015
– E.g., foreach()

3/27/2019 JavaScript 33

Functions

• A function is a block of JavaScript code that is defined once
but may be executed, or invoked, any number of times

• JavaScript functions are parameterized
– A function definition may include a list of identifiers, known as

parameters, that work as local variables for the body of the function

– Function invocations provide values, or arguments, for the function’s
parameters

• Functions often use their argument values to compute a return
value that becomes the value of the function-invocation
expression

• In addition to the arguments, each invocation has another
value—the invocation context—that is the value of the this
keyword

• If a function is assigned to the property of an object, it is
known as a method of that object

3/27/2019 JavaScript 34

Defining functions

3/27/2019 JavaScript 35

// Print the name and value of each property of o. Return undefined.

function printprops(o) {

for(var p in o)

console.log(p + ": " + o[p] + "\n");

}

// Compute the distance between Cartesian points (x1,y1) and (x2,y2).

function distance(x1, y1, x2, y2) {

var dx = x2 - x1;

var dy = y2 - y1;

return Math.sqrt(dx*dx + dy*dy);

}

// A recursive function (one that calls itself) that computes factorials

// Recall that x! is the product of x and all positive integers less than it.

function factorial(x) {

if (x <= 1) return 1;

return x * factorial(x-1);

}

// This function expression defines a function that squares its argument.

// Note that we assign it to a variable

var square = function(x) { return x*x; }

// Function expressions can also be used as arguments to other functions:

data.sort(function(a,b) { return a-b; });

Invoking functions

• JavaScript functions can be invoked in four ways
– As functions

– As methods

– As constructors

– Indirectly through their call() and apply() methods

3/27/2019 JavaScript 36

printprops({x:1});

var total = distance(0,0,2,1) + distance(2,1,3,5);

var probability = factorial(5)/factorial(13);

var calculator = { // An object literal

operand1: 1,

operand2: 1,

add: function() {

// Note the use of the this keyword to refer to this object.

this.result = this.operand1 + this.operand2;

}

};

calculator.add(); // A method invocation to compute 1+1.

calculator.result // => 2

References

• D. Flanagan, "Javascript: the Definitive Guide. Sixth
Edition", O’Reilly

• N. C. Zakas, "Professional JavaScript for Web
Developers. Third Edition", John Wiley & Sons

• ECMAScript® 2015 Language Specification
– http://www.ecma-international.org/ecma-262/6.0/

• Alex MacCaw, "Javascript Web Applications"

• Stoyan Stefanow, "Javascript patterns"

• References
– Mozilla Developer Network http://developer.mozilla.org

– JSbooks https://jsbooks.revolunet.com

– https://developers.google.com/chrome-developer-tools/

– [Slides embedded references]

3/27/2019 JavaScript 37

http://www.ecma-international.org/ecma-262/6.0/
http://developer.mozilla.org/
https://jsbooks.revolunet.com/
https://developers.google.com/chrome-developer-tools/

License

• This work is licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 3,0)” License.

• You are free:
– to Share - to copy, distribute and transmit the work

– to Remix - to adapt the work

• Under the following conditions:
– Attribution - You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

– Noncommercial - You may not use this work for commercial purposes.

– Share Alike - If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same or similar license to this
one.

• To view a copy of this license, visit
http://creativecommons.org/license/by-nc-sa/3.0/

3/27/2019 JavaScript 38

http://creativecommons.org/license/by-nc-sa/3.0/

