Introduction
to JavaScript

CORE JAVASCRIPT

<, POLITECNICO
£1%,/% DITORINO

Laura Farinetti - DAUIN :@é e-Lite
\

What and why JavaScript?

« JavaScript is a lightweight, interpreted programming
language with object-oriented capabilities primarily
used in web browsers for dynamic web pages and
user interaction

— JavaScript made its first appearance in Netscape 2.0 in
1995

— Later standardized by ECMA (www.ecma.ch): ECMAScript

« JavaScript is one of the 3 languages all web
developers must learn
— HTML to define the content of web pages
— CSS to specify the layout of web pages
— JavaScript to program the behavior of web pages

3/27/2019 JavaScript

http://www.ecma.ch/

What can JavaScript do for us?

JavaScript can handle events (mouse click, page
load, ...)

JavaScript can change
— HTML content

— HTML attributes

— HTML styles (CSS)

JavaScript can validate form data
JavaScript can manage media and graphics
JavaScript can work with HTMLS (HTMLS APIls)

esempi1-4.html

http://www.w3schools.com/js/|s_intro.asp

3/27/2019 JavaScript

http://www.w3schools.com/js/js_intro.asp

Short history

« 1995

— May: “Mocha” is invented in Netscape by Brendan Eich
— September: renamed to LiveScript
— December: renamed to Javascript (because Java was
popular)
« 1996: JavaScript is taken to standardization in
ECMA

— From now on ECMAScript is the specification, Javascript is
an implementation (ActionScript is another implementation)

1997. ECMA-262 (ECMASCcript)
1998: ECMASCcript 2
1999: ECMASCcript 3

3/27/2019 JavaScript 4

Short history

« 2005: Mozilla and Macromedia started work on
ECMAScript 4 (feature rich and a very major leap
from ECMAScript 3)

* Yahoo and Microsoft opposed the forming standard,
and ECMAScript 3.1 was the compromise

« 2009: Opposing parties meet in Oslo and achieve an
agreement, and ES3.1 is renamed to ESS

— In the spirit of peace and agreement, the new Javascript
long term agenda is named “Harmony”

« 2015: ESG (part of the "Harmony” umbrella)

— Starting with ES6 version names will be based on the year
of release, so ES6 is ES2015 and ES7 should be ES2016

3/27/2019 JavaScript 5

JavaScripts

* A JavaScript consists of JavaScript statements
placed within the <script>... </script> HTML tags in a
web page

* The <script> tag containing JavaScript code can be
placed anywhere in a web page
— In the head or the body section

prova.html
<html>

<body>
<script language="javascript" type="text/javascript">
<!--
document.write ("Hello World!"™)
//==>
</script>
</body>
</html>

3/27/2019 JavaScript 6

Where to embed JavaScript code?

 |n the head section

— Scripts to be executed when they are called, or when
an event is triggered, go in the head section

— When you place a script in the head section, you will
ensure that the script is loaded before anyone uses it

* |n the body section

— Scripts to be executed when the page loads go in the
body section

— When you place a script in the body section it
generates the content of the page

3/27/2019 JavaScript

What can JavaScript do?

« Generate dialog boxes
* Redirect a page
* Open new browser windows (pop-ups)

* Intercept mouse events
— Clicks on links, buttons, ...
— Mouse-overs, ...
 Read user input in forms
* Modify HTML pages
— Add/remove content
— Change images
— Modify form controls

3/27/2019 JavaScript

What you need to know...

« JS variables and expressions
* JS language constructs (if, while, ...)
« JS objects

— The most important built-in objects

* Interaction with the user
— Mouse, keyboard

* Interaction with the browser
— Windows, pages

* Interaction with the page: the Document Object
Model (DOM)

3/27/2019 JavaScript

Summary

« Core JavaScript
— Lexical structure
— Types, values, and variables
— Expressions and operators
— Statements
— Objects
— Arrays
— Functions
— Classes and modules
— Pattern matching with regular expressions

3/27/2019 JavaScript

10

Summary

* Client-Side JavaScript
— JavaScript in web browsers
— The window object
— Scripting documents (DOM)
— Scripting CSS
— Handling events
— Client-Side Storage
— Scripted Media and Graphics
— HTMLS APls

3/27/2019 JavaScript

11

JavaScript basics

« Syntax is similar to C language

« Case-sensitive language

* Uses the Unicode character set

* Ignores spaces and line breaks

* Semi-colons (at the end of a line) can be omitted
« Comments

// This is a single-line comment.

/* This 1s also a comment */ // and here 1s another comment.
/*

* This 1s yet another comment.

* Tt has multiple lines.

*/

3/27/2019 JavaScript

Literals

« Data values that appear directly in a program

 Examples

12 // The number twelve

1.2 // The number one point two

"hello world" // A string of text

"Hi' // Another string

true // A Boolean value

false // The other Boolean value

/javascript/gi // A "regular expression" literal
(for pattern matching)

null // RAbsence of an object

3/27/2019

JavaScript

13

Types, values and variables

« JavaScript types can be divided into two categories

— Primitive types: numbers, strings, Booleans and the special
JavaScript values “null” and “undefined”

— Object types: any JavaScript value that is not a primitive
type
An object (i.e., a member of the type object) is a
collection of properties where each property has a
name and a value
« JavaScript defines two special kind of objects
— an “array”: an ordered collection of numbered values
— a “function”: an object that has executable code associated

3/27/2019 JavaScript 14

Types, values and variables

* |In JavaScript all variables must be declared before
their use with the “var” keyword

« JavaScript variables are untyped
— You can assign a value of any type to a variable, and you

can later assign a value of a different type to the same
variable

« JavaScript uses lexical scoping
— Variables declared outside of a function are global
variables and are visible everywhere in a JavaScript
program
— Variables declared inside a function have function scope
and are visible only to code that appears inside that
function

3/27/2019 JavaScript

15

Numbers

« Unlike many languages, JavaScript does not make a
distinction between integer values and floating-point
values

* All numbers in JavaScript are represented as
floating-point values
— 64-Dbit floating-point format defined by the IEEE 754

standard
0
3
10000000
Oxff // hexadecimal
OxCAFE911 // hexadecimal
3.14
2345.789
.333333333333333333
6.02e23 // 6.02 x 1023
1.4738223E-32 // 1.4738223 x 10-32

3/27/2019 JavaScript 16

Arithmetic in JavaScript

 Numeric operators: + - * |/ %

« Set of functions and constants defined as properties
of the Math object

Math.pow (2, 53) // => 9007199254740992: 2 to the power 53
Math.round (.6) // => 1.0: round to the nearest integer
Math.ceil (.6) // => 1.0: round up to an integer
Math.floor (.6) // => 0.0: round down to an integer

Math.abs (-5) // => 5: absolute value

Math.max (x,y,z) // Return the largest argument
Math.min(x,vy,z) // Return the smallest argument

Math.random () // Pseudo-random number x where 0 <= x < 1.0
Math.PI // m: circumference of a circle / diameter
Math.E // e: The base of the natural logarithm
Math.sqgrt (3) // The square root of 3

Math.pow (3, 1/3) // The cube root of 3

Math.sin (0) // Trigonometry: also Math.cos, Math.atan, etc.
Math.log (10) // Natural logarithm of 10

Math.log (100) /Math.LN1O // Base 10 logarithm of 100
Math.log(512) /Math.LN2 // Base 2 logarithm of 512

3/27/2019 JavaScript 17

Text

« A string is an ordered sequence of 16-bit values,
each of which typically represents a Unicode
character

* The length of a string is the number of 16-bit values
it contains

« JavaScript’s strings (and arrays) use zero-based
indexing: the first 16-bit value is at position 0

* The empty string is the string of length O

« JavaScript does not have a special type that
represents a single element of a string (character)

— To represent a single 16-bit value, simply use a string that
has a length of 1

3/27/2019 JavaScript 18

String literals

 Examples

// The empty string: it has zero characters
'testing'
"3.14"
'name="myform"'
"Wouldn't you prefer O'Reilly's book?"
"This string\nhas two lines"
"m is the ratio of a circle's circumference to its diameter"
'Youl're right, it can\'t be a quote' // escape sequence

* In client-side JavaScript programming, JavaScript
code may contain strings of HTML code, and HTML
code may contain strings of JavaScript code

<button onclick="alert ('Thank you')">Click Me</button>

3/27/2019 JavaScript 19

String operators, properties and
methods

« Concatenation

msg = "Hello, " + "world"; // Produces the string "Hello,
world"
greeting = "Welcome to my blog,”"™ + " " + name;

* The only property is
— .length (the number of characters in the string)

* Many general methods

— .charAt(), .concat(), .indexOf(), .localeCompare(), .match(),
.replace(), .search(), .slice(), .split(), .substr(), .substring(),
toLowerCase(), .toUpperCase(), .toString(), .valueOf(), ...

« Many methods specific for writing HTML

3/27/2019 JavaScript 20

String methods for HTML formatting

* Methods that returns a copy of the string wrapped
iInside the appropriate HTML tag

— Warning: not standard methods, may not work as expected
In all browsers

* List of main methods

var str = "Hello World!";
— b|g(), _Sma”(), document.wr%te(str);
. . document .write ("
");
'ItaIIC()’ bOId()’ str = str.fontcolor ("red");
_ﬁxed(), _SUb(), _Sup() document.write(str + "
");
str = str.fontsize(7);
— .fontcolor(c), document .urite (str) ;

fontsize(s)

— .anchor(“name”),
Jink(“url”)

3/27/2019 JavaScript 21

Main Javascript operators

Numeric operators

-t %

* |ncrement operators
++ --

* Assignment operators
= += = *= [= 094=

« String operator
+ (concatenation)

« Comparison operators

== (same value) === (same value and same type)
I= > < >= <=

 Boolean and Logic operators
&& (logical “and”) || (logical “or”) ! (logical “not”)

3/27/2019 JavaScript 22

Statements

« Conditionals (e.qg. if, switch)

— Make the JavaScript interpreter execute or skip other
statements depending on the value of an expression

* Loops (e.g. while, for)
— Execute other statements repetitively

« Jumps (e.g. break, return, throw)

— Cause the interpreter to jump to another part of the
program

3/27/2019 JavaScript 23

If statement

if (condition)
{

...code...

if (condition)
{
...code if true...

}

else

{

...code if false...

if (conditionl)

{

...code if 1 true...

}
else 1f (condition?2)

{

...code if 2 true...

}

else

{

..1f both false...

3/27/2019

JavaScript

24

Choice statement

switch (n)
{
case 1:
code block 1
break

case 2:
code block 2
break

default:
code to be executed if n is
different from case 1 and 2

3/27/2019 JavaScript

Loop statements

3/27/2019

for

{

(var=startvalue; var<=endvalue; var=var+increment

code to be executed

)

while (condition is true)

{

code to be executed

do

} while (condition is true)

{

code to be executed

JavaScript

26

Jump statements

3/27/2019

while () // or for
{
code
break
code
}
<€

while (

{
code
continue
code

<€

)

// or for

JavaScript

27

Objects

* An object is a composite value

— It aggregates multiple values (primitive values or other objects)
and allows to store and retrieve those values by name

— Unordered collection of properties, each of which has a name
and a value
* Property names are strings: objects map strings to values
— Similar to fundamental data structure called “hash”, “hashtable”,
“dictionary” or “associative array”
 However an object is more than a simple string-to-value
map: it also inherits the properties of another object,
known as its “prototype”

— The methods of an object are typically inherited properties, and
this “prototypal inheritance” is a key feature of JavaScript

3/27/2019 JavaScript 28

Object example

Object Properties Methods
car.name = Fiat car.start()

'" car.model = 500 car.drive()
car.weight = 850kg car.brake()

car.color = white car.stop()

« All cars have the same properties, but the
property values differ from car to car

« All cars have the same methods, but the
methods are performed at different times

3/27/2019 JavaScript

29

Objects

« JavaScript objects are dynamic: properties can
usually be added and deleted

* Any value in JavaScript that is not a string, a
number, true, false, null, or undefined is an object

 The most common operations to do with objects are
create them and set, query, delete, test, and
enumerate their properties
— ES2015 added several advanced operations on objects

3/27/2019 JavaScript 30

Arrays

An array is an ordered collection of values

— Each value is called an element, and each element has a
numeric position in the array, known as its index

« JavaScript arrays are untyped: an array element
may be of any type, and different elements of the
same array may be of different types

* Creating arrays
— With array literals
— With the Array() constructor

* Reading and Writing Array Elements

— Access to an element of an array: []operator

3/27/2019 JavaScript 31

Examples

var empty = []; // An array with no elements
var primes = [2, 3, 5, 7, 111; // An array with 5 numeric elements
var misc = [1.1, true, "a"]; // 3 elements of various types
var base = 1024; // The values in an array literal need
var table = [base, base+l, base+2, base+3]; // not be constants
var b = [[1,{x:1, y:2}], [2, {x:3, y:4}]]; // can contain object literals
// or other array literals
var count = [1,,3]; // An array with 3 elements, the middle one undefined.
var a = new Array(); // An array with no elements
var a = new Array(10);
var a = new Array(5, 4, 3, 2, 1, "testing, testing");
var a = ["world"]; // Start with a one-element array
var value = al[0]; // Read element O
all] = 3.14; // Write element 1
i = 2;
alil = 3; // Write element 2
al[i + 1] = "hello"; // Write element 3
alali]l]l = al[0]; // Read elements 0 and 2, write element 3
a.length // =>4
3/27/2019 JavaScript 32

Array methods

* See references
— join()
— reverse()
— sort()
— concat()
— slice()
— splice()
— push() and pop()
— unshift() and shift()
— toString()

 Several more in ES2015
— E.g., foreach()

3/27/2019 JavaScript

33

Functions

« A function is a block of JavaScript code that is defined once
but may be executed, or invoked, any number of times

« JavaScript functions are parameterized

— A function definition may include a list of identifiers, known as
parameters, that work as local variables for the body of the function

— Function invocations provide values, or arguments, for the function’s
parameters
* Functions often use their argument values to compute a return

value that becomes the value of the function-invocation
expression

* |n addition to the arguments, each invocation has another
value—the invocation context—that is the value of the this
keyword

« If a function is assigned to the property of an object, it is
known as a method of that object

3/27/2019 JavaScript 34

Defining functions

// Print the name and value of each property of o. Return undefined.
function printprops (o) {

for(var p in o)

console.log(p + ": " + o[p] + "\n");

// Compute the distance between Cartesian points (x1,yl) and (x2,vy2).
function distance (x1, y1, x2, y2) {

var dx = x2 - x1;

var dy = y2 - yl;

return Math.sgrt (dx*dx + dy*dy);

// A recursive function (one that calls itself) that computes factorials
// Recall that x! is the product of x and all positive integers less than it.
function factorial (x) {

if (x <= 1) return 1;

return x * factorial (x-1);

// This function expression defines a function that squares its argument.
// Note that we assign it to a variable
var square = function(x) { return x*x; }

// Function expressions can also be used as arguments to other functions:
data.sort (function(a,b) { return a-b; });

3/27/2019 JavaScript

35

Invoking functions

« JavaScript functions can be invoked in four ways

— As functions | printprops ((x:1});

var total = distance(0,0,2,1) + distance(2,1,3,5);
var probability = factorial (5)/factorial (13);

— As methods

var calculator = { // An object literal
operandl: 1,
operand2: 1,
add: function() {

this.result = this.operandl + this.operand2;

}
i
calculator.add(); // A method invocation to compute 1+1.
calculator.result // => 2

// Note the use of the this keyword to refer to this object.

— As constructors
— Indirectly through their call() and apply() methods

3/27/2019 JavaScript

36

References

« D. Flanagan, "Javascript: the Definitive Guide. Sixth
Edition", O’Reilly

* N. C. Zakas, "Professional JavaScript for Web
Developers. Third Edition", John Wiley & Sons

« ECMASCcript® 2015 Language Specification

— http://www.ecma-international.org/ecma-262/6.0/
* Alex MacCaw, "Javascript Web Applications"
« Stoyan Stefanow, "Javascript patterns”

 References
— Mozilla Developer Network http://developer.mozilla.org
— JSbooks https://jsbooks.revolunet.com
— https://developers.google.com/chrome-developer-tools/
— [Slides embedded references]

3/27/2019 JavaScript

http://www.ecma-international.org/ecma-262/6.0/
http://developer.mozilla.org/
https://jsbooks.revolunet.com/
https://developers.google.com/chrome-developer-tools/

License

 This work is licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 3,0)” License.
* You are free;

— to Share - to copy, distribute and transmit the work
— to Remix - to adapt the work

* Under the following conditions:

— Attribution - You must attribute the work in the manner specified by the
® author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

— Noncommercial - You may not use this work for commercial purposes.

— Share Alike - If you alter, transform, or build upon this work, you may
@ distribute the resulting work only under the same or similar license to this
one.
- To view a copy of this license, visit
http://creativecommons.org/license/by-nc-sa/3.0/

3/27/2019 JavaScript 38

http://creativecommons.org/license/by-nc-sa/3.0/

