
HTML5
Drag &Drop API
For better interfaces

Laura Farinetti - DAUIN

Drag & drop

• HTML 5 includes a Drag and Drop API that
brings native drag&drop support to the browser

• Drag & drop requires

– Something to drag

– A drop target

– JavaScript event handlers

• See

– https://developer.mozilla.org/en/DragDrop/Drag_an
d_Drop

 5/17/2018 HTML5 Canvas 2

https://developer.mozilla.org/en/DragDrop/Drag_and_Drop
https://developer.mozilla.org/en/DragDrop/Drag_and_Drop

Example

5/17/2018 HTML5 Canvas 3

index.htm

l

Something
to drag

Drop
target

Drag events

• A number of events are fired during various stages
of the drag and drop operation
– Only drag events are fired: mouse events such as

mousemove are not fired during a drag operation

• The dataTransfer property of all drag events holds
data about the drag and drop operation

• dragstart
– Fired on an element when a drag is started

– The user requests to drag the element the dragstart
event is fired at

– A listener for this event should set information such as
the drag data and the image to be associated with the
drag

5/17/2018 HTML5 Canvas 4

Drag events

5/17/2018 HTML5 Canvas 5

• dragenter
– Fired when the mouse is first moved over an element while a

drag occurs
– A listener for this event should indicate whether a drop is

allowed over this location
– If there are no listeners, or the listeners perform no operations,

then a drop is not allowed by default
– This is also the event to listen to if you want to provide

feedback that a drop is allowed such as displaying a highlight or
insertion marker

• dragover
– This event is fired as the mouse is moved over an element when

a drag occurs
– Much of the times, the operation that occurs during a listener

will be the same as the dragenter event

Drag events

5/17/2018 HTML5 Canvas 6

• dragleave

– This event is fired when the mouse leaves an element
while a drag is occuring

– Listeners should remove any highlighting or insertion
markers used for drop feedback

• drag

– This event is fired at the source of the drag, that is
the element where dragstart was fired, during the
drag operation

Drag events

5/17/2018 HTML5 Canvas 7

• drop
– This event is fired on the element where the drop occurs

at the end of the drag operation

– A listener would be responsible for retrieving the data
being dragged and inserting it at the drop location

– This event will only fire if a drop is successful

– It will not fire if the user cancelled the drag operation, for
example by pressing the Esc key, or if the mouse button
was released while the mouse was not over a valid drop
target

• dragend
– The source of the drag will receive a dragend event when

the drag operation is complete, whether it was successful
or not

Something to drag

• In HTML the elements and the <a> elements (with an
href) are draggable by default

• In order to make another HTML element draggable, two
things must be done
– Set the draggable attribute to true on the element that you wish to

make draggable

– Add a listener for the dragstart event and set the drag data within
this listener

• Within the dragstart event, you can specify the drag data, the
feedback image and the drag effects
– Only drag data is required

5/17/2018 HTML5 Canvas 8

<div draggable="true"

 ondragstart="event.dataTransfer.setData('text/plain',

 'This text may be dragged')">

 This text may be dragged. </div>

Drag data

• All drag events have a property called
dataTransfer which is used to hold the drag

data

• Information to be provided

– The data to be dragged

– The drag feedback image which appears beside the

mouse pointer during the drag operation; this image
may be customized but most of the time it is not
specified, and a default image is generated

– The drag effects that are allowed

5/17/2018 HTML5 Canvas 9

Drag data

5/17/2018 HTML5 Canvas 10

• When a drag occurs, data must be associated with the drag
which identifies what is being dragged
– Example: when dragging the selected text within a textbox, the

data associated with the drag is the text itself; when dragging a
link on a web page, the drag data is the URL of the link

• The drag data contains two pieces of information
– the type (or format, or data): a type string (e.g text/plain for text

data): types are a MIME-type like string, such as text/plain or
image/jpeg

– the data value: a string of text

• When the drag begins, you add data by providing a type and
the data

• During a drop event, a listener would retrieve the data being
dragged and insert it at the drop location

• To set data within the dataTransfer: setData method
 event.dataTransfer.setData("text/plain", "Text to drag");

Drag feedback

• When a drag occurs, a translucent image is
generated from the drag target and follows the

mouse pointer during the drag

• This image is created automatically

• Or, it is possible to use the setDragImage to

specify a custom drag feedback image

5/17/2018 HTML5 Canvas 11

event.dataTransfer.setDragImage(image, xOffset, yOffset);

Drag effects
• The copy operation is used to indicate that the data being

dragged will be copied from its present location to the drop
location

• The move operation is used to indicate that the data being
dragged will be moved

• The link operation is used to indicate that some form of
relationship or connection will be created between the
source and drop locations

• To specify which of the three operations are allowed for a
drag source: set the effectAllowed property within a
dragstart event listener

• Legal values are: “none”, “copy”, “move”, “link”, “copyMove”,
“copyLink”, “linkMove”, “all” (default)

5/17/2018 HTML5 Canvas 12

event.dataTransfer.effectAllowed = "copy";

Specifying drop targets

• A listener for the dragenter and dragover events
are used to indicate valid drop targets, that is,
places where dragged items may be dropped

• Most areas of a web page or application are not
valid places to drop data
– The default handling for these events is to not allow a

drop

• If you want to allow a drop, you must prevent the
default handling by cancelling the event

• You can do this either by returning false from an
attribute-defined event listener, or by calling the
event’s event.preventDefault method

5/17/2018 HTML5 Canvas 13

<div ondragover="return false">

<div ondragover="event.preventDefault()">

Specifying drop targets

5/17/2018 HTML5 Canvas 14

• It is more common to accept or reject a drop based on
the type of drag data in the data transfer
– For instance, allowing images or links or both

• To do this, you can check the types of the dataTransfer
object

• The contains method checks if the type text/uri-list is
present in the list of types
– If so, we will cancel the default so that a drop may be allowed
– If the drag data does not contain a link, the event will not be

cancelled and a drop cannot occur at that location

function doDragOver(event) {

 var isLink =

 event.dataTransfer.types.contains("text/uri-list");

 if (isLink)

 event.preventDefault(); }

Drop feedback

• There are several ways to indicate to the user that a drop is
allowed at a certain location
– The mouse pointer will update as necessary depending on the

value of the dropEffect property (The actual effect that will be
used, should always be one of the possible values of
effectAllowed)

– Although the exact appearance depends on the user's platform,
typically a plus sign icon will appear for a 'copy' for example, and a
'cannot drop here' icon will appear when a drop is not allowed

– This mouse pointer feedback is sufficient in many cases

• You can also update the user interface with an insertion
point or highlight as needed

– The element with the class droparea will receive a 1 pixel black
border while it is a valid drop target, that is, if the
event.preventDefault method was called during the dragenter
event

5/17/2018 HTML5 Canvas 15

.droparea:-moz-drag-over {

 border: 1px solid black; }

Performing a drop

• When the user releases the mouse, the drag and drop
operation ends
– If the mouse is released over an element that is a valid drop target

(i.e. one that cancelled the last dragenter or dragover event) then
the drop will be successful, and a drop event will fire at the target

– Otherwise, the drag operation is cancelled and no drop event is
fired

• During the drop event, you should retrieve that data that
was dropped from the event and insert it at the drop
location

• The getData method may be used to retrieve the data from
dataTransfer property

• The getData method takes one argument, the type of data to
retrieve and returns the string value that was set when the
setData was called at the beginning of the drag operation
– An empty string will be returned if data of that type does not exist

5/17/2018 HTML5 Canvas 16

Performing a drop

• Here, once we have retrieved the data, we insert the
string as the textual content of the target
– This has the effect of inserting the dragged text where it was

dropped, assuming that the drop target is an area of text such
as a p or div element

• In a web page, you should call the preventDefault
method of the event if you have accepted the drop so
that the default browser handling does not handle the
dropped data as well
– For example, when a link is dragged to a web page, Firefox will

open the link
– By cancelling the event, this behaviour will be prevented

5/17/2018 HTML5 Canvas 17

function onDrop(event) {

 var data = event.dataTransfer.getData("text/plain");

 event.target.textContent = data;

 event.preventDefault(); }

Performing a drop

5/17/2018 HTML5 Canvas 18

• The text/uri-list type actually may contain a list of
URLs, each on a separate line
– In this code, we use the split to split the string into lines,

then iterate over the list of lines, inserting each as a link
into the document

– Note also that we skip links starting with a number sign
(#) as these are comments

function doDrop(event) {

 var links =

 event.dataTransfer.getData("text/uri-list").split("\n");

 for each (var link in links) {

 if (link.indexOf("#") == 0) continue;

 var newlink = document.createElement("a");

 newlink.href = link;

 newlink.textContent = link;

 event.target.appendChild(newlink);

 }

event.preventDefault(); }

Performing a drop

5/17/2018 HTML5 Canvas 19

• For simple cases, the special type URL to just
retrieve the first valid URL in the list

• Simple example:

– http://www.w3schools.com/html/html5_draganddro
p.asp

var link = event.dataTransfer.getData("URL");

http://www.w3schools.com/html/html5_draganddrop.asp
http://www.w3schools.com/html/html5_draganddrop.asp
http://www.w3schools.com/html/html5_draganddrop.asp

Finishing a drag

• Once the drag is complete, a dragend is fired at the
source of the drag (the same element that received the
dragstart event)
– This event will fire if the drag was successful or if it was

cancelled

• You can use the dropEffect to determine what drop
operation occurred
– If the dropEffect property has the value none during a dragend,

then the drag was cancelled
– Otherwise, the effect specifies which operation was performed

• A drop can occur inside the same window or over
another application

• After the dragend event has finished propagating, the
drag and drop operation is complete

5/17/2018 HTML5 Canvas 20

The example: dragstart

5/17/2018 HTML5 Canvas 21

<div draggable="true" id="paper"

 ondragstart="drag(this, event)"></div>

<div draggable="true" id="coke_can"

 ondragstart="drag(this, event)"></div>

<div draggable="true" id="empty_wrapper"

 ondragstart="drag(this, event)"></div>

<div draggable="true" id="bottle"

 ondragstart="drag(this, event)"></div>

<div draggable="true" id="pencil_shavings"

 ondragstart="drag(this, event)"></div>

function drag(drop_target, e) {

 e.dataTransfer.setData('Text', drop_target.id);

 document.getElementById("thanks").style.display="none";

}

The example: dragenter, dragover,
drop

5/17/2018 HTML5 Canvas 22

<div id="trash-can" ondrop="drop(this, event)"

 ondragenter="return false" ondragover="return false">

</div>

function drop(drop_target, e) {

 count++;

 var id = e.dataTransfer.getData('Text');

 document.getElementById("thanks").style.display="block";

 drop_target.appendChild(document.getElementById(id));

 document.getElementById(id).style.display="none";

 if(count==5)

 {

 document.getElementById("thanks").style.display="none";

 document.getElementById("done").style.display="block";

 }

 e.preventDefault();

}

Another example

5/17/2018 HTML5 Canvas 23

drag-color

License

• This work is licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 3,0)” License.

• You are free:
– to Share - to copy, distribute and transmit the work
– to Remix - to adapt the work

• Under the following conditions:
– Attribution - You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they endorse you
or your use of the work).

– Noncommercial - You may not use this work for commercial purposes.
– Share Alike - If you alter, transform, or build upon this work, you may

distribute the resulting work only under the same or similar license to this
one.

• To view a copy of this license, visit
http://creativecommons.org/license/by-nc-sa/3.0/

5/17/2018 HTML5 Canvas 24

http://creativecommons.org/license/by-nc-sa/3.0/
http://creativecommons.org/license/by-nc-sa/3.0/
http://creativecommons.org/license/by-nc-sa/3.0/
http://creativecommons.org/license/by-nc-sa/3.0/
http://creativecommons.org/license/by-nc-sa/3.0/

