
AngularJS
INTRODUCTION TO THE ANGULARJS FRAMEWORK

AngularJS

• AngularJS is a very powerful JavaScript Framework
for writing frontend web applications

• Used in Single Page Application (SPA) projects

• Inspired by the Model-View-Controller pattern

• Extends HTML DOM with additional attributes and
makes it more responsive to user actions

• Open source, completely free, and used by
thousands of developers around the world

• AngularJS version 1.0 was released in 2012
– Miško Hevery, a Google employee, started to work with

AngularJS in 2009

– The idea turned out very well, and the project is now
officially supported by Google

4/16/2017 AngularJS 2

AngularJS

• AngularJS version 2 was released in September
2016
– AngularJS 2 is not a version upgrade, but a complete

rewrite

• AngularJS version 4 was announced in December
2016

• We will use version 1.x, to guarantee compatibility
with other technologies

• Website: https://angularjs.org/
– download version 1.x

• Included in our “starter kit”
– https://github.com/SoNet-2017/starter-kit

4/16/2017 AngularJS 3

https://angularjs.org/
https://github.com/SoNet-2017/starter-kit

Single Page Applications

• A Single Page Application is a web application in which
the majority of interactions are handled on the client
without the need to reach a server

• Goal: to provide a more fluid user experience

• A traditional application force you to load everything
again after each change
– It’s not very efficient on the bandwidth, especially in the mobile

world

• A Single Page Application is an application in which there
is a shell page and you load multiple views into that

• In a SPA you can load the initial content upfront and then
the different views or the little kind of mini-web pages can
be loaded on the fly and embedded into the shell

4/16/2017 AngularJS 4

Traditional web application

4/16/2017 AngularJS 5

Single Page Application

4/16/2017 AngularJS 6

Model-View-Controller

• MVC is an architectural pattern used in software
development

• It’s been around for several decades but has gained
popularity recently thanks to some popular
development frameworks

• Aim: to promote good programming practices and
code reuse by separating a web application into
three layers: data, presentation, and the interaction
between the two

• By separating these elements from each other, each
can be easily updated without affecting the others

4/16/2017 AngularJS 7

Model-View-Controller

• Developed in Xerox Parc, Palo Alto and implemented for the
first time in Smalltalk-80

• Original objective: bridge the gap between the human user’s
mental model and the digital model that exists in the computer

• Used today in the most important software development
frameworks
– AngularJS

– SmallTalk

– Microsoft Foundation Classes (C++), .Net

– Java (Struts, Swing, SpringMVC, Cocoon)

– ActionScript

– Pyton (Zope, Plone)

– Ruby

– PHP (Drupal, Joomla!)

4/16/2017 AngularJS 8

Traditional applications

• A web application collects data and action

requests from users… elaborates/stores them…

visualize the results

• Browser directly accesses page

– Control is not centralized

– No content/style separation

– Easy and fast to

produce

– Difficult to

maintain

4/16/2017 AngularJS 9

MVC applications

• A web application collects data and action requests
from users… elaborates/stores them… visualize the
results

• Browser accesses a “controller”
– Control is centralized

– Clean separation of content/style

– More work to produce

– Easier to maintain and expand

4/16/2017 AngularJS 10

MVC in short

4/16/2017 AngularJS 11

• The Model represents the data

• The View represents the user interface

(i.e. the web page)

• The Controller facilitates communication

between the two

Example

4/16/2017 AngularJS 12

Client

Baker

result

Pans

Ingredients

request

We are

thinking

of …

Example

4/16/2017 AngularJS 13

Client

Baker

result

Pans

Ingredients

request

We are

thinking

of …

Model

View

Controller

The model

• The model represents the data in the application

• “Data” means the “things” in the application that can be
abstracted, generally stored in a database

• In addition to defining the data that a “thing” contains, it’s
also the model’s job to interact with the database where
the actual data are stored, and to implement all logic
relating to the creation, fetching, updating, and deleting,
and other data manipulation

• The model is built on top of an object-relational mapping
(ORM), a system that connects the elements of the
model object to the appropriate fields in the database
– It automatically handles all interaction with the database, allowing

the developer to avoid writing SQL

4/16/2017 AngularJS 14

The model

• The code in the model is often referred to as
business logic

• Business logic is all the rules that define data and
how to interact with it

• By isolating the business logic from the presentation
layer, it is easier to write and maintain the logic for
the application in a way that is both reusable and
transportable to another framework without
conflicting with the way the user interacts with it on
the web page

• A common example of business logic is validation
rules

4/16/2017 AngularJS 15

Example: a blog

• Blogs store posts in a database

• Model called “Post”

• Data
– Post tells the application what type of data a post contains (usually a

title, a date and some body text)

• Business logic
– When a new blog post is made, the application developer wants to

ensure that the post has been given a title

– When the new post is submitted via web form, the model looks at
the data it receives and checks if it conforms to any validation rules
that apply

– If there are any errors, e.g. an empty title field, the model rejects the
data and sends an error back to the user

– If data passes validation, the model opens a connection to the
database and save a new post record, using its ORM

4/16/2017 AngularJS 16

Important

• The model is not the database

• The model is an abstraction

– of the data itself

– of everything the application knows about what the

data is and how it works

• It is considered good practice to put as much of

the code as possible into the model

4/16/2017 AngularJS 17

The view

• The view is the presentation layer of the application,
i.e. the user interface

• For the most part, the view is simply an HTML page

• Small bits of inline logic are included, e.g. simple
loops to create tables

• The goal in creating a good view is to have as little
logic as possible
– A view should be simple enough that someone who only

works with markup and doesn’t program, like a designer,
can work with it easily

– Heavy logics is in the model and in the controller

4/16/2017 AngularJS 18

The view

• There is a different view for each different page in a
MVC application
– Web frameworks that use MVC usually offer a method of

dividing the view into even smaller sections to further
modularize code

• There are many elements of a single page that
usually are in common with other pages on a site
(logo and branding, navigation, footer text, …)
– To keep from repeating all this code in every view, the view

offers a layout, an HTML template that contains all the
markup in common to multiple pages

– When a page loads, the framework will take the specific
view for that page and insert it into the overall layout

4/16/2017 AngularJS 19

Example: a blog

• Separate pages, and therefore separate views are:
– the page for viewing all blog posts

– the page for viewing a specific blog post

– the page for adding a new blog post

– the page for editing an existing blog post

• A partial might be used to contain the markup for an
individual blog post
– on the page that shows one specific entry, this partial will

be used once

– on the index page, where all recent posts are shown, the
partial is called in a loop

4/16/2017 AngularJS 20

The controller

• The controller is the translator between the view and the
model

• It receives requests from the view (the user), decides
what to do, communicates with the model as necessary
to send or retrieve data, and then prepares a response
for the user to be delivered back to the view

• The controller is composed of methods that operate on a
model

• When a user follows a link in the application, the request
is sent through what is called the “dispatcher”, which
accesses the appropriate action in the appropriate
controller

4/16/2017 AngularJS 21

Example: a blog

• The blog has actions for creating, viewing,

editing, and deleting blog posts

• If a user visits a link to a single blog entry

– the dispatcher calls the blog controller’s show action

– the controller then asks the model for the data for the

blog post that the user is requesting

– when the controller receives this data from the model,

it will set variables with that data and pass it on to the

view

4/16/2017 AngularJS 22

Important

• In best practice, the controller don’t do any

manipulation of data or user interface, it simply

translates between the view and the model

– It presents the model with requests for data that it can

understand, and it provides the view with data that it

knows how to format and present to the user

4/16/2017 AngularJS 23

Example: a blog

4/16/2017 AngularJS 24

• The user submits a form that adds a new blog post

• The request is sent to the blog controller, which extracts the data submitted
via the HTTP POST request and sends a message to the blog model to save
a new post with this data

• The model checks the data against its validation rules

• Assuming it passes validation, the model stores the data for this new post in
the database and tells the controller it was successful

• The controller then sets a variable for the view indicating success

• The view displays this message to the user back on the web page, and they
know their new blog post has been successfully created

• If, for some reason, validation of the data failed, the model alerts the
controller of any errors, which would set a variable containing these errors
for the view

• The view would then present the original form along with the error messages
for any fields that didn’t validate

MVC advantages

• Focus separation
– Model centralizes business logic: information designer

– View centralizes display logic: visual designer

– Controller centralizes application flow: interaction designer

• Clean separation of content/style
– Multi-device systems: same model, different views and

controls

– Creative design: different views, adaptable to different
styles or contexts

• Allows multiple people to work on different parts

• Easier testing

4/16/2017 AngularJS 25

The design process

• Iterative process

• In Angular 1, HTML markup is the View, Controller is the Controller
and the Service (when it used to retrieve data) is the Model

4/16/2017 AngularJS 26

Model

View

Controller

Design

Implementation Test

Implementation Test

Implementation Test

Analysis

MVC and AngularJS

• The MVC pattern concepts are somehow abstract

– thepattern may have different implementations depending

on the language, platform, and purpose of the application

• One of the authors says that AngularJS adopts a

Model-View-Whatever (MVW or MV*) pattern

– Regardless of the name, the most important benefit is that

the framework provides a clear separation between the

application layers, providing modularity, flexibility, and

testability

4/16/2017 AngularJS 27

References

• Official site

– https://angularjs.org/

• AngularJS tutorials

– https://www.w3schools.com/angular/default.asp

– https://www.tutorialspoint.com/angularjs/

– http://www.html.it/guide/guida-angularjs/

4/16/2017 AngularJS 28

https://angularjs.org/
https://www.w3schools.com/angular/default.asp
https://www.w3.org/TR/html5/
https://www.w3.org/TR/html5/

License

• This work is licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 3,0)” License.

• You are free:
– to Share - to copy, distribute and transmit the work

– to Remix - to adapt the work

• Under the following conditions:
– Attribution - You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

– Noncommercial - You may not use this work for commercial purposes.

– Share Alike - If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same or similar license to this
one.

• To view a copy of this license, visit
http://creativecommons.org/license/by-nc-sa/3.0/

4/16/2017 AngularJS 29

http://creativecommons.org/license/by-nc-sa/3.0/

