
Python
BASICS

Introduction to Python programming, basic

concepts: formatting, naming conventions,

variables, etc.

Editing / Formatting

• Python programs are
text files

• The end of a line

marks the end of a
statement

• Comments:

– Inline comments start
with a #

3/12/2015 Python basics 2

print 1+1 #statement

inline comment

Editing / Formatting

• Code blocks are
defined through
identation
– mandatory

– 4 spaces strategy
• Use 4 spaces for code

identation

• Configure the text
editor to replace tabs
with 4 spaces (default
in PyDev)

• Exploit automatic
identation

3/12/2015 Python basics 3

def print_name():

 # this is a block

 name = 'sheldon'

 surname = 'cooper'

 print name, surname

4 spaces

4 spaces

4 spaces

4 spaces

Keywords

• and
• del
• from
• not
• while
• as
• elif
• global
• or
• with

• assert
• else
• if
• pass
• yield
• break
• except
• import
• print
• class
• exec

3/12/2015 Python basics 4

• in

• raise

• continue

• finally

• is

• return

• def

• for

• lambda

• try

Numbers and math

3/12/2015 Python basics 5

Operator Description

+ plus Sum

- minus Subtraction

/ slash Floor division

* asterisk Multiplication

** double asterisk Exponentiation

% percent Remainder

< less-than Comparison

> greater-than Comparison

<= less-than-equal Comparison

>= greater-than-equal Comparison

Numbers and math

3/12/2015 Python basics 6

print "I will now count my chickens:"
print "Hens", 25 + 30 / 6
print "Roosters", 100 - 25 * 3 % 4
print "Now I will count the eggs:"
print 3 + 2 + 1 - 5 + 4 % 2 - 1 / 4 + 6
print "Is it true that 3 + 2 < 5 - 7?"
print 3 + 2 < 5 - 7
print "What is 3 + 2?", 3 + 2

print "What is 5 - 7?", 5 - 7
print "Oh, that's why it's False."
print "How about some more."
print "Is it greater?", 5 > -2

Order of operations

• PEMDAS

– Parenthesis

– Exponentiation

– Multiplication

– Division

– Addition

– Subtraction

• Same precedence

– Left to right execution

3/12/2015 Python basics 7

Naming conventions

• joined_lower

– for functions,
variables, attributes

• joined_lower or
ALL_CAPS

– for constants

• StudlyCaps

– for classes

3/12/2015 Python basics 8

#variables

my_variable = 12

my_second_variable = 'Hello!'

#functions

my_function(my_variable)

my_print(my_second_variable)

Variables

• Variable types are not
explicitly declared

• Runtime type-checking
• The same variable can

be reused for holding
different data types

3/12/2015 Python basics 9

#integer variable

a = 1

print a

#float variable

a = 2.345

print a

#re-assignment to string

a = 'my name'

print a

double quotes could be

used as well

a = "my name"

print a

More variables

• Actual type can be
checked through the
interpreter

• Check the first result,
what happened?

• Display 01,010,01010

• Display 08

• Octal numbering system?

3/12/2015 Python basics 10

Examples

3/12/2015 Python basics 11

cars = 100
space_in_a_car = 4.0
drivers = 30
passengers = 90
cars_not_driven = cars - drivers

cars_driven = drivers
carpool_capacity = cars_driven * space_in_a_car
average_passengers_per_car = passengers / cars_driven

print 'There are', cars, 'cars available.'
print 'There are only', drivers, 'drivers available.'
print 'There will be', cars_not_driven, 'empty cars today.'
print 'We can transport', carpool_capacity, 'people today.'
print 'We have', passengers, 'to carpool today.'
print 'We need to put about', average_passengers_per_car,'in each car.'

Strings

• Defined by using quotes
– "first string"

– 'second string'

• Immutable

• Each character in a string is assigned a number
– the number is called index

• Mathematical operators cannot be applied

• Exceptions
– + : means concatenation

– * : means repetition

3/12/2015 Python basics 12

Strings

3/12/2015 Python basics 13

name = 'Anthony "Tony" Stark'

age = 45 # not a lie
height = 174 # cm

weight = 78 # kg

eyes = 'brown'

teeth = 'white'

hair = 'brown'

print "Let's talk about %s." % name

print "He's %d cm tall." % height

print "He's %d pounds heavy." % weight

print "Actually that's not too heavy."
print "He's got %s eyes and %s hair." % (eyes, hair)

print "His teeth are usually %s depending on the coffee." % teeth

this line is tricky, try to get it exactly right

print "If I add %d, %d, and %d I get %d." % (age, height, weight, age + height + weight)

Strings

3/12/2015 Python basics 14

name = 'Anthony "Tony" Stark'

age = 45 # not a lie
height = 174 # cm

weight = 78 # kg

eyes = 'brown'

teeth = 'white'

hair = 'brown'

print "Let's talk about %s." % name

print "He's %d cm tall." % height

print "He's %d pounds heavy." % weight

print "Actually that's not too heavy."
print "He's got %s eyes and %s hair." % (eyes, hair)

print "His teeth are usually %s depending on the coffee." % teeth

this line is tricky, try to get it exactly right

print "If I add %d, %d, and %d I get %d." % (age, height, weight, age + height + weight)

Specifiers
• %s, format strings
• %d, format numbers

• %r, raw representation

Tuple

More strings

3/12/2015 Python basics 15

x = "There are %d types of people." % 10

binary = "binary"

do_not = "don't"

y = "Those who know %s and those who %s." % (binary, do_not)
print x

print y

print "I said: %r." % x

print "I also said: '%s'." % y

hilarious = False
joke_evaluation = "Isn't that joke so funny?! %r"

print joke_evaluation % hilarious

w = "This is the left side of..."

e = "a string with a right side."

print w + e

Escape sequences

• \n

– Line feed + Carriage return

• \\

– Prints a «\»

• We want to print «Hello»

– print "I said: "Hello" "

– Syntax error: no difference between quotes

• Solution: using escape sequences

– print "I said: \“Hello\" "

 3/12/2015 Python basics 16

Getting input from people

• Asking questions

– We want to ask the user’s age

– We want to ask the user’s height

• The raw_input()function allows to read from

the console

3/12/2015 Python basics 17

print "How old are you?",
age = raw_input()

print "How tall are you?",
height = raw_input()
print "You are %s years old, and you are about %s cm tall." % (age, height)

More input

3/12/2015 Python basics 18

height = int(raw_input("How tall are you? "))
name = raw_input("What's your name? ")
print type(height)
print type(name)

print("Hello %s, you are about %d tall" %(name, height))

Command-line parameters

• Python scripts can receive launch parameters

– Placed just after the script name

– Any number

– Accessible through sys.argv

• sys

– Python module to handle system-level operations

• argv

– Argument variable

– for handling command-line parameters

3/12/2015 Python basics 19

Command-line parameters

3/12/2015 Python basics 20

from sys import argv

script, first, second, third = argv

print 'The script is called:', script

print 'Your first variable is:', first
print 'Your second variable is:', second
print 'Your third variable is:', third

Functions

• A function is a named sequence of statements
that performs a computation

– Definition first:

• specify the name and the sequence of statements

– Then usage:

• “call” the function by name

• Examples

– Type conversion functions

• int(‘32’)  32

• str(3.2479)  ‘3.2479’

3/12/2015 Python basics 21

Math functions

• Located in the math module

3/12/2015 Python basics 22

import math

signal_power = 10.0
noise_power = 0.01
ratio = signal_power / noise_power
print "ratio:", ratio

decibels = 10 * math.log10(ratio)
print "decibels:", decibels

radians = 0.7
height = math.sin(radians)
print height

Function call

String functions

• len()

– Gets the length (the number of characters) of a
string

• lower()

– Gets rid of all the capitalization in a string

• upper()

– Transform a string in upper case

• str()

– Transform «everything» in a string

3/12/2015 Python basics 23

String functions: an example

3/12/2015 Python basics 24

course_name = 'Ambient Intelligence'

string_len = len(course_name)
print string_len # 20

print course_name.lower() # ambient intelligence

print course_name.upper() # AMBIENT INTELLIGENCE

pi = 3.14
print "the value of pi is around " + str(pi) without str()

it gives an error

New functions

• Can be defined by developers

• Typically used to group homogeneous code

portions

– i.e., code for accomplishing a well-defined operation

• Enable re-use

– Same operation can be re-used several times

• Defined using the keyword def

3/12/2015 Python basics 25

New functions

3/12/2015 Python basics 26

• Compute the area of a disk, given the radius

import math

def circle_area(radius):

 return radius**2*math.pi

radius = raw_input('Please, insert the radius\n')
print 'Radius: ', radius
print 'Area: ', circle_area(radius) Function call

Function definition

Docstring

• Optional, multiline comment

• Explains what the function does

• Starts and ends with """ or '''

3/12/2015 Python basics 27

import math

def circle_area(radius):
 '''Compute the circle area given its radius'''
 return radius**2*math.pi

radius = raw_input('Please, insert the radius\n')
print 'Radius: ', radius
print 'Area: ', circle_area(radius)

Modules

• A way to logically organize the code

• They are files consisting of Python code

– they can define (and implement) functions, variables,
etc.

– typically, the file containing a module is called in the
same way

• e.g., the module math resides in a file named math.py

• We already met them

3/12/2015 Python basics 28

import math

from sys import argv

Importing modules

• import module_name

– allows to use all the items present in a module

3/12/2015 Python basics 29

import math

def circle_area(radius):
 return radius**2*math.pi

…

Import the math module

Call the pi variable from
the math module

Importing modules

• from module_name import name

– it only imports name from the specified module

• from module_name import *

– it imports all names from a module

– do not use!

3/12/2015 Python basics 30

from math import pi

def circle_area(radius):
 return radius**2*pi
…

Import pi from the math module

Use the pi variable

Playing with files

• Python script can read and write files

• First, open a file

– You can use the open() function

• Then, you can read or write it

– With read(), readline(), or write()

• Finally, remember to close the file

– You can use the close() function

3/12/2015 Python basics 31

Reading files

• Read a file taking its name from command line

3/12/2015 Python basics 32

from sys import argv

filename = argv[1]
txt = open(filename)

print “Here’s your file %r:", % filename
print txt.read()

print “\nType the filename again:”
file_again = raw_input(“> ”)
txt_again = open(file_again)
print txt_again.read()

Open the file

Show the file content

Writing files

3/12/2015 Python basics 33

from sys import argv

script, filename = argv

print "We're going to erase %r." % filename

print "Opening the file..."

target = open(filename, 'w')
print "… truncating the file. Goodbye!"

target.truncate()

print "\nNow I'm going to ask you for two lines."

line1 = raw_input("line 1: ")

line2 = raw_input("line 2: ")
print "I'm going to write these to the file."

target.write(line1)

target.write("\n")

target.write(line2)

target.write("\n")
print "And finally, we close it."

target.close()

Open the file in write mode

Empties the file

Write a string to the file

Conditionals and control flow

• Control flow gives the ability to choose among
outcomes
– based off what else is happening in the program

• Comparators
– Equal to  ==

– Not equal to  !=

– Less than  <

– Less than or equal to  <=

– Greater than  >

– Greater than or equal to  >=

3/12/2015 Python basics 34

Comparators: an example

3/12/2015 Python basics 35

print 2 == 1 # False

print 2 == 2 # True

print 10 >= 2 # True

print 2 < 10 # True

print 5 != 5 # False

print 'string' == "string" # True

number = 123
print number > 100 # True

Boolean operators

• They are three:

– not

– and

– or

• Not evaluated from left to right

– not is evaluated first

– and is evaluated next

– or is evaluated last

3/12/2015 Python basics 36

Boolean operators: an example

3/12/2015 Python basics 37

print 2 == 1 and True # False

print 2 == 2 or True # True

print 10 >= 2 and 2 != 1 # True

print not True # False

print 10 > 5 and 10 == 10 or 5 < 2 # True

print not False and True # True

Conditional statement

• if is a statements that executes some code
after checking if a given expression is True

• Structure

if expression:

 do something

3/12/2015 Python basics 38

people = 20

cats = 30

if people < cats:

 print 'Too many cats! The world

is doomed!'

if people > cats:

 print 'Not many cats! The world

is saved!'

More “if”

• Let’s try to “improve” the previous example

• Chained conditionals
– To express more than two possibilities

– Each condition is checked in order

3/12/2015 Python basics 39

people = 20
cats = 30

if people < cats:
 print 'Too many cats! The world is doomed!'
elif people > cats:
 print 'Not many cats! The world is saved!'
else:
 print "We can’t decide.”

else if

Loops and lists

• Loop

– An easy way to do repetitive things

– A condition to start and stop the loop is required

– e.g., for and while loops

• List

– A datatype for storing multiple items

• a sequence of values

– You can assign items to a list in this way:

list_name = [item1, item2, …]

3/12/2015 Python basics 40

Loops and lists: an example

3/12/2015 Python basics 41

the_count = [1, 2, 3, 4, 5]
fruits = ['apples', 'oranges', 'pears', 'apricots']
change = [1, 'pennies', 2, 'dimes', 3, 'quarters']

this first kind of for-loop goes through a list
for number in the_count:
 print 'This is count %d' % number

same as above
for fruit in fruits:
 print 'A fruit of type: %s' % fruit

we can go through mixed lists too
notice that we have to use %r since we don't know what's in it
for i in change:
 print 'I got %r' % i

Three lists

Loops and lists: an example

3/12/2015 Python basics 42

the_count = [1, 2, 3, 4, 5]
fruits = ['apples', 'oranges', 'pears', 'apricots']
change = [1, 'pennies', 2, 'dimes', 3, 'quarters']

this first kind of for-loop goes through a list
for number in the_count:
 print 'This is count %d' % number

same as above
for fruit in fruits:
 print 'A fruit of type: %s' % fruit

we can go through mixed lists too
notice that we have to use %r since we don't know what's in it
for i in change:
 print 'I got %r' % i

Structure of a for loop
• for variable in collection:
• indent for the loop body

More “for”

3/12/2015 Python basics 43

we can also build lists: start with an empty one…
elements = []

then use the range function to do 0 to 5 counts

for i in range(0, 6):
 print 'Adding %d to the list.' % i
 # append() is a function that lists understand
 elements.append(i)

now we can print them out
for i in elements:
 print 'Element was: %d' % i

Empty list

Repeat 6 times

Lists

• Mutable

• Do not have a fixed length

– You can add items to a list at any time

• Accessible by index

3/12/2015 Python basics 44

letters = [‘a’, ‘b’, ‘c’]

letters.append(‘d’)

print letters # a, b, c, d

print letters[0] # a

print len(letters) # 4

letters[3] = ‘e’

print letters # a, b, c, e

More lists

• List concatenation

– with the + operator

• List slices

– to access a portion of a list

– with the [:] operator

3/12/2015 Python basics 45

a = [1, 2, 3]

b = [4, 5, 6]

c = a + b

print c # 1, 2, 3, 4, 5, 6

c = [1, 2, 3, 4, 5, 6]

d = c[1:3] # d is [2, 3]

e = c[:3] # e is [1, 2, 3]

f = c[:] # f is a full copy of c

More lists

• List concatenation

– with the + operator

• List slices

– to access a portion of a list

– with the [:] operator

3/12/2015 Python basics 46

a = [1, 2, 3]

b = [4, 5, 6]

c = a + b

print c # 1, 2, 3, 4, 5, 6

c = [1, 2, 3, 4, 5, 6]

d = c[1:3] # d is [2, 3]

e = c[:3] # e is [1, 2, 3]

f = c[:] # f is a full copy of c

works with string, too

List functions

• append()
– add a new element to the end of a list

– e.g., my_list.append(‘d’)

• sort()
– arrange the elements of the list from low to high

– e.g., from a to z, from 1 to infinite, etc.

• extend()
– takes a list as an argument and appends all its

elements

– e.g., first_list.extend(second_list)

3/12/2015 Python basics 47

Deleting elements from a list

• Several ways to delete elements from a list

• If you know the index of the element to
remove: pop()
– without providing an index, pop() delete the last

element

• If you know the element to remove (but not the
index): remove()

• To remove more than one element: del()
– with a slice index

• e.g., del my_list[5:8]

3/12/2015 Python basics 48

Strings vs. lists

• A string is a sequence of character, but a list of
character is not a string

• To convert a string into a list of characters: list()

– e.g., my_list = list(my_string)

• To break a string into separate words: split()

– split a list according to some delimiters (default:
space)

– e.g., my_list = my_string.split()

– The inverse function is join()

3/12/2015 Python basics 49

Copying lists

• What happens here?

3/12/2015 Python basics 50

fruits = ['apple', 'orange', 'pear', 'apricot']
print 'The fruits are:', fruits
favourite_fruits = fruits

print 'My favourite fruits are', favourite_fruits

add a fruit to the original list
fruits.append(‘banana’)

print 'The fruits now are:', fruits
print 'My favourite fruits are', favourite_fruits

Copying lists

• What happens here?

3/12/2015 Python basics 51

fruits = ['apple', 'orange', 'pear', 'apricot']
print 'The fruits are:', fruits
favourite_fruits = fruits

print 'My favourite fruits are', favourite_fruits

add a fruit to the original list
fruits.append(‘banana’)

print 'The fruits now are:', fruits
print 'My favourite fruits are', favourite_fruits

We do not make a copy of
the entire list, but we only
make a reference to it!

Copying lists

• How to make a full copy of a list?

• Various methods exist

– you can entirely slice a list

• favourite_fruits = fruits[:]

– you can create a new list from the existing one

• favourite_fruits = list(fruit)

– you can extend an empty list with the existing one

• favourite_fruits.extend(fruit)

• Prefer the list() method, when possible!

3/12/2015 Python basics 52

Dictionaries

• Similar to lists, but you can access values by
looking up a key instead of an index

– A key can be a string or a number

• Example

– A dictionary with 3 key-value pairs

dict = { ‘key1’ : 1, ‘key2’ : 2, ‘key3’ : 3 }

• Mutable, like lists

– They can be changed after their creation

3/12/2015 Python basics 53

Dictionaries: an example

3/12/2015 Python basics 54

create a mapping of U.S. state to abbreviation
states = {
 'Oregon' : 'OR',
 'Florida' : 'FL',
 'California' : 'CA'
}
print 'States:', states
print 'Is Oregon available?', 'Oregon' in states

add some more states
states['New York'] = 'NY'

states['Michigan'] = 'MI'

print two states
print "New York’s abbreviation is: ", states[‘New York’]
print "Florida’s abbreviation is: ", states[‘Florida’]

Create a dictionary with 3 key-value pairs

Add two more key-value pairs

More dictionaries

3/12/2015 Python basics 55

states is a dictionary defined as before

print every state abbreviation
for state, abbrev in states.items():
 print "%s is abbreviated %s", % (state, abbrev)

safely get an abbreviation of a state that might not be there
state = states.get('Texas', None) # None is the default

if not state:
 print "Sorry, no Texas."

get a state abbreviation with a default value
next_state = states.get('Massachusetts', 'Does Not Exist')
print "Massachusetts is abbreviated %s", % next_state

Dictionary functions

• len()
– dictionary length: the number of key-value pairs

• del()
– remove a key-value pair

• e.g., del my_dict[my_key]

• clear()
– remove all items from a dictionary

• keys() and values()
– return a copy of the dictionary’s list of key and value,

respectively

3/12/2015 Python basics 56

References and Links

• The Python Tutorial,
http://docs.python.org/2/tutorial/

• «Think Python: How to think like a computer
scientist», Allen Downey, Green Tea Press,
Needham, Massachusetts

• «Dive into Python 2», Mark Pilgrim
• «Learn Python the Hard Way», Zed Shaw
• «Learning Python» (5th edition), Mark Lutz, O'Reilly
• The Google Python course,

https://developer.google.com/edu/python
• Online Python Tutor, http://pythontutor.com

3/12/2015 Python basics 57

http://docs.python.org/2/tutorial/
https://developer.google.com/edu/python
https://developer.google.com/edu/python
http://pythontutor.com/

Questions?
01PRD AMBIENT INTELLIGENCE: TECHNOLOGY AND DESIGN

Luigi De Russis and Dario Bonino

luigi.derussis@polito.it

bonino@isbm.it

License

• This work is licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 3,0)” License.

• You are free:
– to Share - to copy, distribute and transmit the work
– to Remix - to adapt the work

• Under the following conditions:
– Attribution - You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they endorse you
or your use of the work).

– Noncommercial - You may not use this work for commercial purposes.
– Share Alike - If you alter, transform, or build upon this work, you may

distribute the resulting work only under the same or similar license to this
one.

• To view a copy of this license, visit
http://creativecommons.org/license/by-nc-sa/3.0/

3/12/2015 Version Control with Git 59

http://creativecommons.org/license/by-nc-sa/3.0/
http://creativecommons.org/license/by-nc-sa/3.0/
http://creativecommons.org/license/by-nc-sa/3.0/
http://creativecommons.org/license/by-nc-sa/3.0/
http://creativecommons.org/license/by-nc-sa/3.0/

