
Python 
BASICS 

Introduction to Python programming, basic 

concepts: formatting, naming conventions, 

variables, etc. 



Editing / Formatting 

• Python programs are 
text files 

• The end of a line 

marks the end of a 
statement 

• Comments: 

– Inline comments start 
with a # 
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print 1+1 #statement 

 

 

# inline comment 

 

 

 



Editing / Formatting 

• Code blocks are 
defined through 
identation 
– mandatory  

– 4 spaces strategy  
• Use 4 spaces for code 

identation 

• Configure the text 
editor to replace tabs 
with 4 spaces (default 
in PyDev) 

• Exploit automatic 
identation 
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def print_name(): 

 # this is a block 

 name = 'sheldon' 

 surname = 'cooper' 

       print name, surname 

4 spaces 

4 spaces 

4 spaces 

4 spaces 



Keywords 

• and  
• del  
• from  
• not  
• while 
• as 
• elif 
• global 
• or 
• with 

• assert  
• else  
• if  
• pass  
• yield 
• break  
• except  
• import  
• print 
• class  
• exec  
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• in  

• raise 

• continue  

• finally  

• is  

• return 

• def  

• for  

• lambda  

• try 

 



Numbers and math 
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Operator Description 

+ plus Sum 

- minus Subtraction 

/ slash Floor division 

* asterisk Multiplication 

** double asterisk Exponentiation 

% percent Remainder 

< less-than Comparison 

> greater-than Comparison 

<= less-than-equal Comparison 

>= greater-than-equal Comparison 



Numbers and math 
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print "I will now count my chickens:" 
print "Hens", 25 + 30 / 6 
print "Roosters", 100 - 25 * 3 % 4 
print "Now I will count the eggs:" 
print 3 + 2 + 1 - 5 + 4 % 2 - 1 / 4 + 6 
print "Is it true that 3 + 2 < 5 - 7?" 
print 3 + 2 < 5 - 7 
print "What is 3 + 2?", 3 + 2 

print "What is 5 - 7?", 5 - 7 
print "Oh, that's why it's False." 
print "How about some more." 
print "Is it greater?", 5 > -2 



Order of operations 

• PEMDAS 

– Parenthesis 

– Exponentiation 

– Multiplication 

– Division 

– Addition 

– Subtraction 

• Same precedence 

– Left to right execution 
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Naming conventions 

• joined_lower  

– for functions, 
variables, attributes 

• joined_lower or 
ALL_CAPS  

– for constants 

• StudlyCaps  

– for classes 
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#variables 

my_variable = 12 

my_second_variable = 'Hello!' 

 

#functions 

my_function(my_variable) 

my_print(my_second_variable) 



Variables 

• Variable types are not 
explicitly declared 

• Runtime type-checking 
• The same variable can 

be reused for holding 
different data types 
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#integer variable 

a = 1 

print a 

 

#float variable 

a = 2.345 

print a 

 

#re-assignment to string 

a = 'my name' 

print a 

 

# double quotes could be  

# used as well 

a = "my name" 

print a 

 



More variables 

• Actual type can be 
checked through the 
interpreter 

• Check the first result, 
what happened? 

• Display 01,010,01010 

• Display 08 

• Octal numbering system? 

 

3/12/2015 Python basics 10 



Examples 
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cars = 100 
space_in_a_car = 4.0 
drivers = 30 
passengers = 90 
cars_not_driven = cars - drivers 

cars_driven = drivers 
carpool_capacity = cars_driven * space_in_a_car 
average_passengers_per_car = passengers / cars_driven 
 
print 'There are', cars, 'cars available.' 
print 'There are only', drivers, 'drivers available.' 
print 'There will be', cars_not_driven, 'empty cars today.' 
print 'We can transport', carpool_capacity, 'people today.' 
print 'We have', passengers, 'to carpool today.' 
print 'We need to put about', average_passengers_per_car,'in each car.' 



Strings 

• Defined by using quotes 
– "first string" 

– 'second string'  

• Immutable 

• Each character in a string is assigned a number 
– the number is called index 

• Mathematical operators cannot be applied 

• Exceptions 
– + : means concatenation 

– * : means repetition 
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Strings 
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name = 'Anthony "Tony" Stark' 

age = 45 # not a lie 
height = 174 # cm 

weight = 78 # kg 

eyes = 'brown' 

teeth = 'white' 

hair = 'brown' 
 

print "Let's talk about %s." % name 

print "He's %d cm tall." % height 

print "He's %d pounds heavy." % weight 

print "Actually that's not too heavy." 
print "He's got %s eyes and %s hair." % (eyes, hair) 

print "His teeth are usually %s depending on the coffee." % teeth 

# this line is tricky, try to get it exactly right 

print "If I add %d, %d, and %d I get %d." % (age, height, weight, age + height + weight) 



Strings 
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name = 'Anthony "Tony" Stark' 

age = 45 # not a lie 
height = 174 # cm 

weight = 78 # kg 

eyes = 'brown' 

teeth = 'white' 

hair = 'brown' 
 

print "Let's talk about %s." % name 

print "He's %d cm tall." % height 

print "He's %d pounds heavy." % weight 

print "Actually that's not too heavy." 
print "He's got %s eyes and %s hair." % (eyes, hair) 

print "His teeth are usually %s depending on the coffee." % teeth 

# this line is tricky, try to get it exactly right 

print "If I add %d, %d, and %d I get %d." % (age, height, weight, age + height + weight) 

Specifiers 
• %s, format strings 
• %d, format numbers 

• %r, raw representation 

Tuple 



More strings 
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x = "There are %d types of people." % 10 

binary = "binary" 

do_not = "don't" 

y = "Those who know %s and those who %s." % (binary, do_not) 
print x 

print y 

print "I said: %r." % x 

print "I also said: '%s'." % y 

hilarious = False 
joke_evaluation = "Isn't that joke so funny?! %r" 

print joke_evaluation % hilarious 

w = "This is the left side of..." 

e = "a string with a right side." 

print w + e 



Escape sequences 

• \n  

– Line feed + Carriage return 

• \\  

– Prints a «\» 

• We want to print «Hello» 

– print  "I said: "Hello" " 

– Syntax error: no difference between quotes 

• Solution: using escape sequences 

– print "I said: \“Hello\" " 
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Getting input from people 

• Asking questions 

– We want to ask the user’s age 

– We want to ask the user’s height 

• The raw_input()function allows to read from 

the console 
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print "How old are you?", 
age = raw_input() 

print "How tall are you?", 
height = raw_input() 
print "You are %s years old, and you are about %s cm tall." % (age, height) 



More input 
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height = int(raw_input("How tall are you? ")) 
name = raw_input("What's your name? ") 
print type(height) 
print type(name) 
 
print("Hello %s, you are about %d tall" %(name, height) )  



Command-line parameters 

• Python scripts can receive launch parameters 

– Placed just after the script name 

– Any number 

– Accessible through sys.argv 

• sys 

– Python module to handle system-level operations 

• argv 

– Argument variable 

– for handling command-line parameters 
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Command-line parameters 
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from sys import argv 
 
script, first, second, third = argv 
 
print 'The script is called:', script 

print 'Your first variable is:', first 
print 'Your second variable is:', second 
print 'Your third variable is:', third 



Functions 

• A function is a named sequence of statements 
that performs a computation 

– Definition first:  

• specify the name and the sequence of statements 

– Then usage: 

• “call” the function by name 

• Examples 

– Type conversion functions 

• int(‘32’)  32 

• str(3.2479)  ‘3.2479’ 
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Math functions 

• Located in the math module 
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import math 
 
signal_power = 10.0 
noise_power = 0.01 
ratio = signal_power / noise_power 
print "ratio:", ratio 
 

decibels = 10 * math.log10(ratio) 
print "decibels:", decibels 
 
radians = 0.7 
height = math.sin(radians) 
print height 

Function call 
 



String functions 

• len() 

– Gets the length (the number of characters) of a 
string 

• lower() 

– Gets rid of all the capitalization in a string 

• upper() 

– Transform a string in upper case 

• str() 

– Transform «everything» in a string 
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String functions: an example 
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course_name = 'Ambient Intelligence' 
 
string_len = len(course_name) 
print string_len # 20 
 
print course_name.lower() # ambient intelligence 
 
print course_name.upper() # AMBIENT INTELLIGENCE 
 

pi = 3.14 
print "the value of pi is around " + str(pi) without str() 

it gives an error 



New functions 

• Can be defined by developers 

• Typically used to group homogeneous code 

portions 

– i.e., code for accomplishing a well-defined operation 

• Enable re-use 

– Same operation can be re-used several times 

• Defined using the keyword def 
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New functions 
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• Compute the area of a disk, given the radius 

import math 
 
def circle_area(radius): 

    return radius**2*math.pi 
 
radius = raw_input('Please, insert the radius\n') 
print 'Radius: ', radius 
print 'Area: ', circle_area(radius) Function call 

 

Function definition 
 



Docstring 

• Optional, multiline comment 

• Explains what the function does 

• Starts and ends with """ or ''' 
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import math 
 
def circle_area(radius): 
    '''Compute the circle area given its radius''' 
    return radius**2*math.pi 
 
radius = raw_input('Please, insert the radius\n') 
print 'Radius: ', radius 
print 'Area: ', circle_area(radius) 



Modules 

• A way to logically organize the code 

• They are files consisting of Python code 

– they can define (and implement) functions, variables, 
etc. 

– typically, the file containing a module is called in the 
same way 

• e.g., the module math resides in a file named math.py 

• We already met them 
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import math 
 

from sys import argv 



Importing modules 

• import module_name 

– allows to use all the items present in a module 
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import math 
 
def circle_area(radius): 
    return radius**2*math.pi 
 

… 

Import the math module 
 

Call the pi variable from 
the math module 
 



Importing modules 

• from module_name import name 

– it only imports name from the specified module 

 

 

 

  

• from module_name import * 

– it imports all names from a module 

– do not use! 
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from math import pi 
 
def circle_area(radius): 
    return radius**2*pi 
… 

Import pi from the math module 
 

Use the pi variable 



Playing with files 

• Python script can read and write files 

• First, open a file 

– You can use the open() function 

• Then, you can read or write it 

– With read(), readline(), or write() 

• Finally, remember to close the file 

– You can use the close() function 
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Reading files 

• Read a file taking its name from command line 
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from sys import argv 
 
filename = argv[1] 
txt = open(filename) 
 

print “Here’s your file %r:", % filename 
print txt.read() 
 
print “\nType the filename again:” 
file_again = raw_input(“> ”) 
txt_again = open(file_again) 
print txt_again.read() 

Open the file 
 

Show the file content 
 



Writing files 
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from sys import argv 

 
script, filename = argv 

 

print "We're going to erase %r." % filename 

print "Opening the file..." 

target = open(filename, 'w') 
print "… truncating the file. Goodbye!" 

target.truncate() 

print "\nNow I'm going to ask you for two lines." 

line1 = raw_input("line 1: ") 

line2 = raw_input("line 2: ") 
print "I'm going to write these to the file." 

target.write(line1) 

target.write("\n") 

target.write(line2) 

target.write("\n") 
print "And finally, we close it." 

target.close() 

Open the file in write mode 
 

Empties the file 
 

Write a string to the file 
 



Conditionals and control flow 

• Control flow gives the ability to choose among 
outcomes 
– based off what else is happening in the program 

• Comparators 
– Equal to  == 

– Not equal to  != 

– Less than  < 

– Less than or equal to  <= 

– Greater than  > 

– Greater than or equal to  >= 
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Comparators: an example 
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print 2 == 1 # False 
 
print 2 == 2 # True 
 
print 10 >= 2 # True 
 
print 2 < 10 # True 
 
print 5 != 5 # False 
 

print 'string' == "string" # True 
 
number = 123 
print number > 100 # True 



Boolean operators 

• They are three: 

– not 

– and 

– or 

• Not evaluated from left to right 

– not is evaluated first 

– and is evaluated next 

– or is evaluated last 
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Boolean operators: an example 
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print 2 == 1 and True # False 
 
print 2 == 2 or True # True 
 
print 10 >= 2 and 2 != 1 # True 
 
print not True # False 
 
print 10 > 5 and 10 == 10 or 5 < 2 # True  
 

print not False and True # True 



Conditional statement 

• if is a statements that executes some code 
after checking if a given expression is True 

 

• Structure 

if expression: 

    do something 
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people = 20 

cats = 30 

 

if people < cats: 

    print 'Too many cats! The world 

is doomed!' 

 

if people > cats: 

    print 'Not many cats! The world 

is saved!' 



More “if” 

• Let’s try to “improve” the previous example 

 

 

 

 

 

• Chained conditionals 
– To express more than two possibilities 

– Each condition is checked in order 
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people = 20 
cats = 30 

if people < cats: 
    print 'Too many cats! The world is doomed!' 
elif people > cats: 
    print 'Not many cats! The world is saved!' 
else: 
    print "We can’t decide.” 

else if 

 



Loops and lists 

• Loop 

– An easy way to do repetitive things 

– A condition to start and stop the loop is required 

– e.g., for and while loops 

• List 

– A datatype for storing multiple items 

• a sequence of values 

– You can assign items to a list in this way: 

list_name = [item1, item2, …] 
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Loops and lists: an example 
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the_count = [1, 2, 3, 4, 5] 
fruits = ['apples', 'oranges', 'pears', 'apricots'] 
change = [1, 'pennies', 2, 'dimes', 3, 'quarters'] 
 
# this first kind of for-loop goes through a list 
for number in the_count: 
    print 'This is count %d' % number 
 
# same as above 
for fruit in fruits: 
    print 'A fruit of type: %s' % fruit 

 
# we can go through mixed lists too 
# notice that we have to use %r since we don't know what's in it 
for i in change: 
    print 'I got %r' % i 

Three lists 
 



Loops and lists: an example 
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the_count = [1, 2, 3, 4, 5] 
fruits = ['apples', 'oranges', 'pears', 'apricots'] 
change = [1, 'pennies', 2, 'dimes', 3, 'quarters'] 
 

# this first kind of for-loop goes through a list 
for number in the_count: 
    print 'This is count %d' % number 
 
# same as above 
for fruit in fruits: 
    print 'A fruit of type: %s' % fruit 
 
# we can go through mixed lists too 
# notice that we have to use %r since we don't know what's in it 
for i in change: 
    print 'I got %r' % i 

Structure of a for loop 
• for variable in collection: 
• indent for the loop body 



More “for” 
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# we can also build lists: start with an empty one… 
elements = [] 
 
# then use the range function to do 0 to 5 counts 

for i in range(0, 6): 
    print 'Adding %d to the list.' % i 
    # append() is a function that lists understand 
    elements.append(i) 
 
# now we can print them out 
for i in elements: 
    print 'Element was: %d' % i 

Empty list 
 

Repeat 6 times 
 



Lists 

• Mutable 

• Do not have a fixed length 

– You can add items to a list at any time 

• Accessible by index 
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letters = [‘a’, ‘b’, ‘c’] 

letters.append(‘d’) 

print letters # a, b, c, d 
 

print letters[0] # a 

 

print len(letters) # 4 

 
letters[3] = ‘e’ 

print letters # a, b, c, e 



More lists 

• List concatenation 

– with the + operator 

 

 

• List slices 

– to access a portion of a list 

– with the [:] operator 
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a = [1, 2, 3] 

b = [4, 5, 6] 

c = a + b 

print c # 1, 2, 3, 4, 5, 6 

c = [1, 2, 3, 4, 5, 6] 

d = c[1:3] # d is [2, 3] 

e = c[:3] # e is [1, 2, 3] 

f = c[:] # f is a full copy of c 



More lists 

• List concatenation 

– with the + operator 

 

 

• List slices 

– to access a portion of a list 

– with the [:] operator 
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a = [1, 2, 3] 

b = [4, 5, 6] 

c = a + b 

print c # 1, 2, 3, 4, 5, 6 

c = [1, 2, 3, 4, 5, 6] 

d = c[1:3] # d is [2, 3] 

e = c[:3] # e is [1, 2, 3] 

f = c[:] # f is a full copy of c 

works with string, too 



List functions 

• append() 
– add a new element to the end of a list 

– e.g., my_list.append(‘d’) 

• sort() 
– arrange the elements of the list from low to high 

– e.g., from a to z, from 1 to infinite, etc. 

• extend() 
– takes a list as an argument and appends all its 

elements 

– e.g., first_list.extend(second_list) 
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Deleting elements from a list 

• Several ways to delete elements from a list 

• If you know the index of the element to 
remove: pop() 
– without providing an index, pop() delete the last 

element 

• If you know the element to remove (but not the 
index): remove() 

• To remove more than one element: del() 
– with a slice index 

• e.g., del my_list[5:8] 
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Strings vs. lists 

• A string is a sequence of character, but a list of 
character is not a string 

• To convert a string into a list of characters: list() 

– e.g., my_list = list(my_string) 

• To break a string into separate words: split() 

– split a list according to some delimiters (default: 
space) 

– e.g., my_list = my_string.split() 

– The inverse function is join() 
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Copying lists 

• What happens here? 
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fruits = ['apple', 'orange', 'pear', 'apricot'] 
print 'The fruits are:', fruits 
favourite_fruits = fruits 

print 'My favourite fruits are', favourite_fruits 
 
# add a fruit to the original list 
fruits.append(‘banana’) 
 
print 'The fruits now are:', fruits 
print 'My favourite fruits are', favourite_fruits 



Copying lists 

• What happens here? 
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fruits = ['apple', 'orange', 'pear', 'apricot'] 
print 'The fruits are:', fruits 
favourite_fruits = fruits 

print 'My favourite fruits are', favourite_fruits 
 
# add a fruit to the original list 
fruits.append(‘banana’) 
 
print 'The fruits now are:', fruits 
print 'My favourite fruits are', favourite_fruits 

We do not make a copy of 
the entire list, but we only 
make a reference to it! 



Copying lists 

• How to make a full copy of a list? 

• Various methods exist 

– you can entirely slice a list 

• favourite_fruits = fruits[:] 

– you can create a new list from the existing one 

• favourite_fruits = list(fruit) 

– you can extend an empty list with the existing one 

• favourite_fruits.extend(fruit) 

• Prefer the list() method, when possible! 
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Dictionaries 

• Similar to lists, but you can access values by 
looking up a key instead of an index 

– A key can be a string or a number 

• Example 

– A dictionary with 3 key-value pairs 

dict = { ‘key1’ : 1, ‘key2’ : 2, ‘key3’ : 3 } 

• Mutable, like lists 

– They can be changed after their creation 
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Dictionaries: an example 
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# create a mapping of U.S. state to abbreviation 
states = { 
    'Oregon' : 'OR', 
    'Florida' : 'FL', 
    'California' : 'CA' 
} 
print 'States:', states 
print 'Is Oregon available?', 'Oregon' in states 
 
# add some more states 
states['New York'] = 'NY' 

states['Michigan'] = 'MI' 
 
# print two states 
print "New York’s abbreviation is: ", states[‘New York’] 
print "Florida’s abbreviation is: ", states[‘Florida’] 

Create a dictionary with 3 key-value pairs 
 

Add two more key-value pairs 
 



More dictionaries 
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# states is a dictionary defined as before 
 
# print every state abbreviation 
for state, abbrev in states.items(): 
    print "%s is abbreviated %s", % (state, abbrev) 
 
# safely get an abbreviation of a state that might not be there 
state = states.get('Texas', None) # None is the default 
 
if not state: 
    print "Sorry, no Texas." 

 
# get a state abbreviation with a default value 
next_state = states.get('Massachusetts', 'Does Not Exist') 
print "Massachusetts is abbreviated %s", % next_state 



Dictionary functions 

• len() 
– dictionary length: the number of key-value pairs 

• del() 
– remove a key-value pair 

• e.g., del my_dict[my_key] 

• clear() 
– remove all items from a dictionary 

• keys() and values() 
– return a copy of the dictionary’s list of key and value, 

respectively 
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