Python

BASICS

Introduction to Python programming, basic
concepts: formatting, naming conventions,
variables, etc.

Editing / Formatting

« Python programs are
text files

e The end of aline 4 inline comment
marks the end of a
statement

e Comments:

— Inline comments start
witha #

print 1+1 #statement

3/12/2015 Python basics

Editing / Formatting

 Code blocks are
defined through

identation
— mandatory
def int :
-4 Spaces Strategy - prl; t_}?f;nei(s), a block
« Use 4 spaces for code naces — '
St é) g— name sheldon
iaencacion surname = 'cooper'

4 spaces .
print name, surname

« Configure the text
editor to replace tabs
with 4 spaces (default

in PyDev)

« Exploit automatic
identation

4 spaces

3/12/2015 Python basics

Keywords

e and e assert e in

e del e else e raise

’ Frotm - if continue

* NO * Pass .

. while . yield Finally

¢ as * break "B

. elif . except * return

« global . import * def

* Or e print - for

e with « class * lambda
¢ exec * Lry

3/12/2015 Python basics

Numbers and math

Operator

+ plus

- Minus

/ slash

* asterisk

** double asterisk
% percent

< less-than

> greater-than

<= less-than-equal
>= greater-than-equal

3/12/2015

Description
Sum
Subtraction
Floor division
Multiplication
Exponentiation
Remainder
Comparison
Comparison
Comparison
Comparison

Python basics

Numbers and math "‘/

print "I will now count my chickens:"
print "Hens" 25+30/6

print "Roosters”,100-25*3 % 4
print “Now I will count the eggs:"
print3+2+1-5+4%2-1/4+6
print “Isit true that3 +2 <5-7?"
print3+2<5-7

print "Whatis3 +2?" 3 +2

print "Whatis5-7?"5-7

print "Oh, that's why it's False."
print "How about some more."
print "Is it greater?”, 5 > -2

3/12/2015 Python basics

% python numbers_and_math.py
I will now count my chickens:
Hens 3@

Roosters 27

Mow I will count the eggs:

I
Is it true that 3 + 2 { § - 77

False

What is g

What is 5 — 77

Oh, that’s why 1 False.
How about some more.

Is it greater? True

Order of operations

 PEMDAS
— Parenthesis

— Exponentiation
— Multiplication
— Division
— Addition
— Subtraction
e Same precedence
— Left to right execution

3/12/2015 Python basics 7

Naming conventions

°* joined lower

— for functions,
variables, attributes

#variables

* jJoilned lower or my variable = 12
AL I, CAPS my second variable = 'Hello!'
— for constants #functions
my function(my variable)
° StUdlycapS my print(my second varilable)

— for classes

3/12/2015 Python basics

Variables

« Variable types are not | #integer variable

explicitly declared ;r;ni]
« Runtime type-checking

» The same variable can | #flear vasiable
be reused for holding orint
different data types

#fre-assignment to string
a = 'my name'
print a

double quotes could be
used as well

a = "my name"

print a

3/12/2015 Python basics

More variables

A oa = #1234
>x¥ typedad

« Actual type can be tupel JAnet s

checked through the }Eg print a
Interpreter 3%y o = 1234
 Check the first result, }i} tyyq"i:?}
5 ype - 1n
what happened: 333 print a
« Display 01,010,01010
. Di 22> a = "Hello world?®"
Display 08 33> typeda)
« Octal numbering system? type ‘str'>

22 print a
ello world®
o

3/12/2015 Python basics 10

Examples

puython variabhles.py

There ave 18 cars available.

cars =100 There are only 38 drivers available.
space_in_a_car=4.0 There will be Y8 empty cars today.
drivers = 30 e can transport 120.H people todavy.
e have 78 to carpool today.
passengers =90 e need to put about 3 in each car.

cars_not_driven = cars - drivers

cars_driven = drivers

carpool_capacity = cars_driven * space_in_a_car
average_passengers_per_car = passengers / cars_driven

print 'There are’ cars, 'cars available.’

print 'There are only’, drivers, 'drivers available.’

print 'There will be’, cars_not_driven, 'empty cars today.'

print 'We can transport’, carpool_capacity, ‘people today.’

print 'We have', passengers, ‘to carpool today.’

print 'We need to put about’ average_passengers_per_car, in each car.’

3/12/2015 Python basics 11

Strings

Defined by using quotes
— "First string”
— 'second string’

Immutable

Each characterin a string is assigned a number
— the number is called index

Mathematical operators cannot be applied

I!_l_anamEll

« Exceptions 22> print “my
] my name
— +:means concatenation |[EEE vt LT [0

% op o oneoneone
— *:means repetition 3%

3/12/2015 Python basics 12

Strings .

name = 'Anthony "Tony" Stark'

— ; $ python strings.py
age=45#nota lie Let's talk about Anthony "Tony" Stark.
height =174 # cm He's 174 cm tall.
; He's 78 kg heavy.
weight = 78 # kg Actually that's not too heavy.

eyes = 'brown' He's got brown eyes and brown hair.

i His teeth are usually white depending on the coffee.
teeth = 'white' If I add 45, 174, and 78 I get 297.

hair = 'brown’

print "Let's talk about %s." % name

print "He's %d cm tall." % height

print "He's %d pounds heavy." % weight

print "Actually that's not too heavy."

print "He's got %s eyes and %s hair." % (eyes, hair)

print "His teeth are usually %s depending on the coffee.” % teeth

this line is tricky, try to get it exactly right

print "Ifl add %d, %d, and %d I get %d." % (age, height, weight, age + height + weight)

3/12/2015 Python basics 13

Strings

Specifiers
* %s, Format strings

e ¢ %d, Format numbers
age =45 # not I M = \WAYI T Y= =1ulely
height =174 #
weight =78 # kg
eyes = 'brown’
teeth = 'white'
hair = 'brown'

print "He's %d pounds heavy." % weight

print "Actually that's not too heavy.”

print "He's got %s eyes and %s hair." ’

print "His teeth are usually %s dependingo eTO0ffee.” % teeth
this line is tricky, try to get it exactly right

print "If I add %d, %d, and %d | get %d." % (age, height, weight, age + height + weight)

3/12/2015 Python basics 14

More strings

x = "There are %d types of people."% 10

binary = "binary”

do_not = "don't"

y = "Those who know %s and those who %s." % (binary, do_not)
print x

printy

print "/ said: %r." % x

print "/ also said: '%s"" %y

hilarious = False

joke _evaluation = “Isn't that joke so funny?! %r"
print joke_evaluation % hilarious

w = "This is the left side of..." }pythnn nge_stringg-py .

_n . . . S IEPE APE types of people.
€= astring with a right side. hose who know hinary and those who don’t.
printw+e [zaid: 'There are 10 types of people.’.

[also said: ’Those who know bhinary and those who don't
[zsn't that joke so funny?! False
This is the left side of...a string with a right side.

3/12/2015 Python basics 15

Escape sequences

. \n
— Line feed + Carriage return

* \\

— Prints a «\»

We want to print «Hello»

— print "l said: "Hello" "

— Syntax error: no difference between quotes
Solution: using escape sequences

— print "l said: \"Hello\" "

3/12/2015 Python basics 16

Getting input from people

« Asking questions
— We want to ask the user’s age
— We want to ask the user’s height

* The raw input () function allows to read from
the console

print "How old are you?",

age = raw_input()

print "How tall are you?",

height = raw_input()

print "You are %s years old, and you are about %s cm tall." % (age, height)

3/12/2015 Python basics 17

More input

height = int(raw_input("How tall are you? "))
name = raw_input("What's your name? ")
print type(height)

print type(name)

print("Hello %s, you are about %d tall" %(name, height))

$ python more_input.py
How tall are you? 180
hat's your name? Luigi

"int ">
'str’>
, You are about 180 cm tall.

3/12/2015 Python basics

18

Command-line parameters

« Python scripts can receive launch parameters
— Placed just after the script name
— Any number
— Accessible through sys.argv

* SyS
— Python module to handle system-level operations
e argv
— Argument variable
— for handling command-line parameters

3/12/2015 Python basics

19

Command-line parameters

from sys import argv

$ python cli_parameters.py one two 3
. . . The script 1is called: cli_parameters.py
script, First, second, third = argv Your first variable is: one
Your second variable is: two

-

IlYour third variable 1is: 3

print 'The script is called:', script
print 'Your first variable is:', first
print 'Your second variable is:', second
print 'Your third variable is:', third

$ python cli_parameters.py
Traceback (most recent call last):
File "cli_parameters.py"”, 1ine 23, in <module>

script, first, second, third = argv #argv unpacking
ValueError: need more than 1 value to unpack

3/12/2015 Python basics 20

Functions

« A function is a named sequence of statements
that performs a computation

— Definition First:
« specify the name and the sequence of statements

— Then usage:
« “call” the Function by name

« Examples

— Type conversion functions
« int('32") = 32
e str(3.2479) > '3.2479’

3/12/2015 Python basics

21

Math functions

e Located in the math module

import math

signal_power =10.0

noise_power = 0.01

ratio = signal_power / noise_power
print "ratio:", ratio

decibels = 10 * math.log10(ratio)
print "decibels:", decibels

radians = 0.7

height = math.sin(radians)
print height

3/12/2015 Python basics

Function call

22

String functions

len()

— Gets the length (the number of characters) of a
string

lower()
— Gets rid of all the capitalization in a string

upper()

— Transform a string in upper case

str()
— Transform «everything» in a string

3/12/2015 Python basics 23

String functions: an example

course_name = 'Ambient Intelligence'

string_len = len(course_name)
print string_len # 20

print course_name.lower() # ambient intelligence
print course_name.upper() # AMBIENT INTELLIGENCE

pi=3.14

print "the value of piis around " + str(pi) without str()

it gives an error

3/12/2015 Python basics 24

New functions

Can be defined by developers

Typically used to group homogeneous code
portions

— i.e., code for accomplishing a well-defined operation

Enable re-use
— Same operation can be re-used several times

Defined using the keyword def

3/12/2015 Python basics 25

New functions

« Compute the area of a disk, given the radius

import math

def circle_area(radius): Function definition
return radius**2*math.pi

radius = raw_input('Please, insert the radius\n')
print 'Radius: ', radius
print ‘Area: ', circle_area(radius) Function call

$ python new_functions.py
insert the radius

10

"314.159265359

3/12/2015 Python basics 26

Docstring

e Optional, multiline comment
« Explains what the function does
« Starts and ends with """ or '

import math
def circle_area(radius):
return radius**2*math.pi
radius = raw_input('Please, insert the radius\n’)

print 'Radius: ', radius
print ‘Area: ', circle_area(radius)

3/12/2015 Python basics

27

Modules

« A way to logically organize the code

* They are files consisting of Python code

— they can define (and implement) functions, variables,
etc.

— typically, the file containing a module is called in the
same way
 e.g., the module mathresides in a fFile named math.py

« We already met them

import math

From sys import argv

3/12/2015 Python basics 28

Importing modules

« import module name
— allows to use all the items present in a module

imporkt math Import the math module

def circle_area(radius):

return radius**2*math.pi Call the pivariable from

the math module

3/12/2015 Python basics

29

Importing modules

* from module nameimport name
— it only imports name from the specified module

from math import pi Import pi from the math module

def circle_area(radius):
return radius**2*pi Use the pivariable

 from module nameimport *
— it imports all names from a module
— do not use!

3/12/2015 Python basics

30

Playing with files

« Python script can read and write Ffiles
* First, open afile
— You can use the open() function

* Then, you can read or write it
— With read(), readline(), or write()

« Finally, remember to close the Ffile
— You can use the close() function

3/12/2015 Python basics

2%

31

Reading Files

* Read a file taking its name from command line
from sys import argv

filename = argv[1]
txt = open(filename) Open the file

print “Here’s your file %r:", % Filename
print txt.read() Show the Ffile content

print “InType the filename again:” AN MR RIS
File_again = raw_inpuk(“>") fhe 2en of Python, by Tim Peters

Beautiful is better than ugly.

H — H H Explicit is better than implicit.
txt_again = open(file_again) TR R
° . Complex is better than complicated.
pr"“t txt aga|n read() Flat is better than nested.
— * Sparse is better than dense.

Readability counts. :
Special cases aren't special enough to break the rules.

Although practicality beats purity.

3/12/2015 Python basics 32

3 python write_files.py garbage.txt
We 're going to erase 'garbage.txt'.

Opening the file...

Writi ng Fi les ... truncating the file. Goodbye!

Now I'm going to ask you for two lines.
line 1: Hello! _
Tine 2: Ambient Intelligence

fFrom svs imporkt argqv I'm going to write these to the file...
y P 9 And finally, we close 1it.

script, filename = argv

print "We're going to erase %r." % Filename
print "Opening the file..."

target = open(filename, ‘w) Open the file in write mode
print “.. truncating the file. Goodbye!"
target.truncate() Empties the file

print “"\nNow I'm going to ask you for two lines."
line1 = raw_input("line 1: ")

line2 = raw_input(“line 2: ")

print "I'm going to write these to the file."
target.write(line1)
target.write("\n")
target.write(line2)
target.write("\n")

print "And finally, we close it."
target.close()

Write a string to the Ffile

3/12/2015 Python basics 33

Conditionals and control flow

« Control flow gives the ability to choose among
outcomes
— based off what else is happening in the program

 Comparators
— Equalto - ==
— Not equalto = !=
— Less than - <
— Less than or equalto » <=
— Greater than > >
— Greater than or equal to 2 >=

3/12/2015 Python basics

34

Comparators: an example

print 2 ==1 # False

python comparators.py
== 1 is False

== 2 1is True
0 >= 2 is True

< 10 is True

I= 5 is False

'string' == "string" is True

print2 <10 # True The variable "number" is greater than 100? True

print 2 ==2 # True

print 10 >=2 # True

'I
2
£
2
<
1
2
<
5

print 5!=5 # False
print 'string' == "string" # True

number =123
print number > 100 # True

3/12/2015 Python basics 35

Boolean operators

* They are three:
— not
— and
—or
* Not evaluated from left to right
— not is evaluated First
— and is evaluated next
— or is evaluated last

3/12/2015 Python basics

36

Boolean operators: an example

print 2 ==1 and True # False python boolean_ops.py

? == 1 and True is False

. 2 2 or True 1is True
print 2==2 or True # True 10 »= 2 and 2 !'= 1 is True

not True 1is False
. 10 > 5 and 10 == 10 or 5 < 2 1s True
print10>=2and 2 !=1# True not False and True is True

print not True # False
print10>5and 10==100or5<2 # True

print not False and True # True

3/12/2015 Python basics 37

Conditional statement

 ifis a statements that executes some code
after checking if a given expression is True

e Structure
if expression:
do something

3/12/2015

people = 20
cats = 30

1f people < cats:

print 'Too many cats! The world
is doomed!"

1if people > cats:

print 'Not many cats! The world
1s saved!'

Python basics

38

More “if”

« Let's try to “improve” the previous example

people =20

cats =30

if people < cats:
print 'Too many cats! The world is doomed!'

elif people > cats: elseif
print 'Not many cats! The world is saved!

else:
print "We can’t decide.”

 Chained conditionals
— To express more than two possibilities
— Each condition is checked in order

3/12/2015 Python basics

Loops and lists

 Loop
— An easy way to do repetitive things
— A condition to start and stop the loop is required
— e.g., for and while loops
o List
— A datatype for storing multiple items
« a sequence of values

— You can assign items to a list in this way:
list_name = [item1, item2,...]

3/12/2015 Python basics

40

Loops and lists: an example

the count=1[1, 2, 3, 4, 5]
fruits = ['apples’, 'oranges’, 'pears’, 'apricots']

. . Three lists
change =[1, 'pennies’, 2, 'dimes’, 3, 'quarters']

» python loops_and_lists.py
This 1is count 1

this first kind of for-loop goes through a list Thic 12 count 3
for number in the_count: This 1% count s

print 'This is count %d' % number it of type: apples

of type: oranges
of type: pears
of type: apricots

same as above

'pennies’
L L] . . 2
For fruit in fruits: S

print 'A fruit of type: %s' % fruit 3

'quarters’

we can go through mixed lists too
notice that we have to use %r since we don't know what's in it
foriin change:

print 'l got %r' % i

3/12/2015 Python basics 41

Loops and lists: an example

the_count =11, 2, 3, 4, 5]

fruits = ['apples’, 'oranges’, 'pears’, 'apricots']
change =[1, 'pennies’, 2, 'dimes’, 3, 'quarters']
goes through a list

this First kind of for-loap

same as above Structure of a for loop
For fruit in fruits: « forvariable in collection:
print 'A fruit of type: %s' % (R le I M a1 (s]s] s X 5o 16\

we can go through mixed lists too
notice that we have to use %r since we don't know what's in it
Foriin change:

print 'l got %r' % i

3/12/2015 Python basics

More “for”

we can also build lists: start with an empty one...
elements =[] Empty list

then use the range function to do 0 to 5 counts
Foriinrange(0, 6):

print 'Adding %d to the list.' % i Repeat 6 times
append() is a function that lists understand
elements.append(i) PVENON MOFe:T OF DY
Adding to the 1ist.
now we can print them out 'ﬁgg}ﬂg £ the Jist.
foriin elements: Adding 3 to the list.
print 'Element was: %d' % i ﬁggmg s o Eﬂg }]EE

Element was:
|E1ement was:
Element was:
Element was:
Element was:
Element was:

3/12/2015 Python basics

Lists

 Mutable

« Do not have a fixed length
— You can add items to a list at any time

« Accessible by index

1

letters = ['a’, 'b’, ‘c’
letters.append(‘d’)
print letters#4a, b, ¢, d

print letters[0] # a
print len(letters) # 4

letters[3] = ‘e’
print letters#a, b, c, e

3/12/2015

$ python Tists.py
The 1ist 1is ["a', 'b"', 'c']
The 1ist now is ['a', 'b', 'c', 'd']

The first element of the 1list 1is a
The 1ist length 1is 4
Finally, the T1ist is ['a', 'b"', 'c', 'e']

Python basics 44

More lists

 List concatenation
— with the + operator

$ python more_lists.py

a=1[1,2,3] The first Tist is [%, 2, 3]]
- The secon ist is [4, 5, 6
b_[4' 5' 6] List concatenation: [1, 2, 3, 4, 5, 6]
c=a+b 1-3 slicing of the concatenated list [2, 3]
. 0-3 s1licing of the concatenated 1ist [1, 2, 3]
printc#1,2,3,4,5,6 Full slicing of the concatenated 1ist [1, 2, 3, 4, 5, 6]

« Listslices
— to access a portion of a list

— with the [:] operator

c=[1,2,3,4,5,6]
d=c[1:3]#dis[2, 3]
e=c[:3]#eis[1,?2,3]
fF=c[:]#FisaFull copy of c

3/12/2015 Python basics 45

More lists

* List concatenation

— with the + operator

a=[1,2,3]
b=1[4,5, 6]

c=a+b
printc#1,2,3,4,5,6

 Listslices
— to access a portion of a list

— with the [:] operator

C=[11213i41516] . .
d=c[1:3]#dis[2, 3] works with string, too

e=c[:3]#eis[1,?2,3]
fF=c[:]#FisaFull copy of c

3/12/2015 Python basics

46

List Functions

» append()
— add a new element to the end of a list
— e.g., my _list.append(‘d’)
 sort()
— arrange the elements of the list from low to high
— e.g.,fromatoz from 1 toinfinite, etc.
« extend()

— takes a list as an argument and appends all its
elements

— e.qg., first_list.extend(second list)

3/12/2015 Python basics

47

Deleting elements from a list

« Several ways to delete elements from a list

* |Fyou know the index of the element to
remove: pop()

— without providing an index, pop() delete the last
element

* IFyou know the element to remove (but not the
index): remove()

 Toremove more than one element: del()

— with a slice index
« e.qg., delmy list[5:8]

3/12/2015 Python basics 48

Strings vs. lisks

« Astringis a sequence of character, but a list of
character is not a string

« To convert a string into a list of characters: lisk()
— e.qg., my _list = list(my _string)

« To break a string into separate words: split()

— split a list according to some delimiters (default:
space)

— e.qg., my_list = my _string.split()
— The inverse function is join()

3/12/2015 Python basics 49

Copying lists

« What happens here?

fruits = ['apple’, 'orange’, 'pear’, 'apricot']
print 'The fruits are:', fruits

favourite_fruits = Fruits

print 'My favourite fruits are', favourite_fruits

add a fruit to the original list
fruits.append(‘banana’)

print 'The fruits now are:', fruits
print 'My favourite fruits are', favourite_fruits

$ python copying_list.py _
The fruits are: ['apple', 'orange', 'pear', 'apricot']

n

My favourite fruits are ['apple’, 'orange', 'pear', 'apricot']

The fruits now are: ['apple', ‘orange', 'pear', 'apricot', 'banana']
My favourite fruits are ['apple', 'orange', 'pear', 'apricot', 'banana']

3/12/2015 Python basics 50

Copying lists

What happens here?

Frmts—[apple ‘orange’, 'pear’, 'apricot']

rint 'The are:' fruits
favourite_ Frmts = Frmts
printMy-favourite fromesare’, Favourite_fruits

add a fruit to the original list We do not make a copy of

fruits.append('banana’)

the entire list, but we only
make a reference to it!

Frames Objects

print 'The fruits now are:', ff
print 'My favourite fruits arj

Global frame list

“apple” “orange"

“PEE "

"apricot™

0
fruits I{?’
favourite_fruits L

3/12/2015 Python basics

51

Copying lists

 How to make a Full copy of a list?

« Various methods exist
— you can entirely slice a list
« favourite_fruits = fruits/:]
— you can create a new list from the existing one
 favourite_fruits = list(fruit)
— you can extend an empty list with the existing one
« favourite_fruits.extend(fruit)

* Prefer the list() method, when possible!

3/12/2015 Python basics

52

Dictionaries

 Similar to lists, but you can access values by
looking up a key instead of an index

— A key can be a string or a number

« Example

— A dictionary with 3 key-value pairs
dict ={'key1': 1, 'key2': 2, 'key3': 3}

 Mutable, like lists
— They can be changed after their creation

3/12/2015 Python basics

53

Dictionaries: an example

create a mapping of U.S. state to abbreviation

states = {
'Oregon':'OR’,
'Florida': 'FL', Create a dictionary with 3 key-value pairs
'California’: 'CA'

}

print ‘States:’, states
print /s Oregon available?’, 'Oregon’ in states

add some more states
states['New York'] = 'NY' .
states['Michigan'] = 'MI' Add two more key-value pairs
print two states
print "New York’s abbreviation is: ", states['New York’]
print "Florida’s abbreviation is: ", states['Florida’]

3/12/2015 Python basics 54

More dictionaries

states is a dictionary defined as before

print every state abbreviation
for state, abbrev in states.items():
print "%s is abbreviated %s", % (state, abbrev)

safely get an abbreviation of a state that might not be there
state = states.get('Texas’ None) # None is the default

if not state:
print "Sorry, no Texas."

get a state abbreviation with a default value

next_state = states.get('Massachusetts', 'Does Not Exist')
print "Massachusetts is abbreviated %s", % next_state

3/12/2015 Python basics

55

Dictionary functions

 len()

— dictionary length: the number of key-value pairs

« del()

— remove a key-value pair
« e.qg., del my dict[my key]

« clear()
— remove all items from a dictionary

« keys() and values()

— return a copy of the dictionary’s list of key and value,
respectively

3/12/2015 Python basics 56

References and Links

 The Python Tutorial,
http://docs.python.org/2/tutorial/

« «Think Python: How to think like a computer
scientist», Allen Downey, Green Tea Press,
Needham, Massachusetts

« «Dive into Python 2», Mark Pilgrim
« «Learn Python the Hard Way», Zed Shaw
« «Learning Python» (5th edition), Mark Lutz, O'Reilly

« The Google Python course,
https://developer.google.com/edu/python

Online Python Tutor, http://pythontutor.com

3/12/2015 Python basics 57

http://docs.python.org/2/tutorial/
https://developer.google.com/edu/python
https://developer.google.com/edu/python
http://pythontutor.com/

Questions?

01PRD AMBIENT INTELLIGENCE: TECHNOLOGY AND DESIGN
Luigi De Russis and Dario Bonino

luigi.derussis@polito.it
bonino@isbm.it

- ol G D088

License

 Thiswork s licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 3,0)" License.
 You are free:

— to Share - to copy, distribute and transmit the work
— to Remix - to adapt the work

« Under the following conditions:

— Attribution - You must attribute the work in the manner specified by the
® author or licensor (but not in any way that suggests that they endorse you
or your use of the work).

— Noncommercial - You may not use this work for commercial purposes.

— Share Alike - If you alter, transform, or build upon this work, you may
@ distribute the resulting work only under the same or similar license to this
one.
« To view a copy of this license, visit
http://creativecommons.org/license/by-nc-sa/3.0/

3/12/2015 Version Control with Git 59

http://creativecommons.org/license/by-nc-sa/3.0/
http://creativecommons.org/license/by-nc-sa/3.0/
http://creativecommons.org/license/by-nc-sa/3.0/
http://creativecommons.org/license/by-nc-sa/3.0/
http://creativecommons.org/license/by-nc-sa/3.0/

