
Hardware
FUNDAMENTALS

Getting started with Do It Yourself circuits and

Raspberry Pi

Hardware?

• Three main types of hardware (in this course)

– Commercial, off-the-shelf devices/appliances

– Do It Yourself solutions

– The central gateway

• On which runs the environment intelligence

• Centralized approach for the sake of simplicity

3/9/2015 Hardware fundamentals 2

Focus

• In this tutorial we focus on

– The central gateway

– Do It Yourself solutions

• And the rest?

– Will be treated in detail throughout the course

3/9/2015 Hardware fundamentals 3

Goals

• Knowledge of the reference platform

• Getting started to develop ad-hoc solutions

when needed

3/9/2015 Hardware fundamentals 4

The Gateway

• Hosts the environment intelligence

• Must have enough computational power

• Should easily interface existing automation

networks

• Should easily interface appliances and smart

devices (e.g., TVs, Monitors, etc.)

• Should exploit Internet connectivity

– When available

• Should support integration of ad-hoc solution

3/9/2015 Hardware fundamentals 5

Candidates

• Beagle black
– Medium cost

– Ready for DIY

– Less easy to interface
commercial devices

– High computational power
– Good connectivity

• Raspberry Pi
– Low cost
– Ready fo DIY

– Easy to interface
commercial devices

– Good computational power
– Good connectivity

• Arduino
– Cheap

– Ready for DIY

– Difficult to interface
commercial devices

– Low computational power
– Low connectivity

3/9/2015 Hardware fundamentals 6

For this course the

Raspberry Pi
represents an

optimal trade-off

Raspberry Pi
A SHORT INTRODUCTION

A short introduction on Raspberry Pi including

hardware, software and DIY capabilities

Components

• Processor
– The same you would

have found in the
iPhone 3G and the
Kindle 2

– ARM11, 700MHz, 32bit
(quad-core on Pi-2)

– 512MByte of RAM
(1GByte on Pi2)

• SD
– everything is stored on

an SD Card

• USB
– 2 USB 2.0 ports (4 on Pi-

2)

– Up to 500mA

– Not advisable to use for
high power loads
• Phone cell chargers

• Portable HDD

• Ethernet
– Standard 10/100 (Model

B only)

– WiFi connectivity via a
USB dongle

3/9/2015 Hardware fundamentals 8

Components (Cont’d)

• HDMI
– 14 different

resolutions

– Composite out
available (NTSC / PAL)

– Can be converted to
other formats

• Status LEDs
– Visual feedback on

the Pi status

• Analog Audio output
– Designed to drive

high-impedence loads
(e.g., active speakers)

• Power input
– Micro USB connector

– Typical rating 5V,
1200mA

– Could work from a PC
USB (but exceeds USB
max current...)

3/9/2015 Hardware fundamentals 9

Components (cont’d)

• General Purpose
Input and Output
(GPIO)
– To read buttons and

switches

– To control actuators

– Etc.

• Display Serial
Interface (DSI)
– To communicate with

a LCD or OLED display

• Camera Serial
Interface (CSI)
– To directly connect a

camera module

3/9/2015 Hardware fundamentals 10

Ratings (Pi model B)

• Power supply
– 5V

– At least 700mA

• SD card
– 8GByte
– Class 6 or higher for

reasonable
performances
• We will use class 10

cards

• GPIO rating
– Max sink current: 16mA

– Max source current:
tunable from 2 to 16mA
• Lower is better

– Total drawable current
on 3.3V supply
• 40mA

– Total drawable current
on 5V supply
• Around 500mA

• Can be increased by
increasing the power
supply ratings

3/9/2015 Hardware fundamentals 11

Operating system

• Raspberry Pi runs
Linux

• Several supported

distributions

– Raspbian

• The “officially
recommended” one

– Occidentalis

• Developed by Adafruit
to support electronic
development

– Arch Linux

– PiDora

• A fedora port for
Raspberry Pi

– Raspbmc

• XBMC based
distribution

• To use the Pi as a
media center

– OpenElec

• Similar to Raspbmc,
based on Syslinux

3/9/2015 Hardware fundamentals 12

Installation

• We adopt the «official» Raspbian distribution

• Raspbian is provided as raw image

– Bit-for-bit representation of how the data shall be
written on disk

– Cannot be simply copied to the SD card

– A disk imaging utility must be used

• dd (Linux/Mac)

• Win32DiskImager (Windows)

3/9/2015 Hardware fundamentals 13

First boot

• Plug the SD card into the socket.

• Plug in a USB keyboard and mouse.

• Plug the HDMI output into your TV or monitor.

• Plug in the power supply.

3/9/2015 Hardware fundamentals 14

Initial configuration

3/9/2015 Hardware fundamentals 15

First Checks

• Login
– User: pi

– Password: raspberry (must possibly be changed)

• Board revision
– cat /proc/cpuinfo

• Python version
– python - -version

• Python RPi tools
– easy_install Rpi.GPIO

• must be connected to the Internet

3/9/2015 Hardware fundamentals 16

Do It Yourself
DEMO PROJECTS

Project 1: LED control

• Goal

– Light-up a red LED using one GPIO port

– Control the LED switching from Python

• Required Components

– The Raspberry Pi

– A red LED

– A NPN transistor (BC337-25 in our example)

– A couple of resistors

3/9/2015 Hardware fundamentals 18

LED control - schematics

• Can be directly driven
by the GPIO output,
– safer to use as control

for a power switch (a
transistor)

• Care must be taken to
not exceed the
maximum ratings
– 40mA on all GPIO

outputs

– 8mA on a single GPIO
(can be tuned)

– Better if lower than
1mA

3/9/2015 Hardware fundamentals 19

330Ω

GPIO output

GPIO
output

4.7kΩ

330Ω

+5V

BC337-25

LED control – design

• Direct control

– The LED causes a
voltage drop from
1.2V to around 2V

– IGPIO = 3.3V-2V/330Ω =
1.3V/330Ω = 3.94mA

– IGPIO = 3.3V-1.2V/330Ω
= 2.1V/330Ω = 6,34mA

3/9/2015 Hardware fundamentals

330Ω

GPIO output

20

LED control – design (cont’d)

• Power switch
– The LED causes a

voltage drop from
1.2V to around 2V

– IGPIO = 5V-2V/330Ω =
3V/330Ω = 9mA

• Transitor in
saturation
– hfemin = 160

– IB=3.3V-0.6V/4.7kΩ=

 574 μA

3/9/2015 Hardware fundamentals

21 21

GPIO
output

4.7kΩ

330Ω

+5V

BC337-25

LED control - Python

3/9/2015 Hardware fundamentals 22

import RPi.GPIO as GPIO
import time

#set-up pin numbering
GPIO.setmode(GPIO.BOARD)
#set-up pin function
GPIO.setup(15,GPIO.OUT)

#iterate 10 times
for i in range(10):

 GPIO.output(15,1) #set the output at 1, LED on
 time.sleep(1) # keep it for 1 second
 GPIO.output(15,0) # set the output at 0, LED off
 time.sleep(1) #keep it for 1 second

Turn alternatively on
and off the LED for
10 times

Project 2: light sensor

• Goal
– Design a cheap light sensor

– Read the «light level» by using Python

• Components
– The Raspberry Pi

– A photo-resistor

– 2 fixed resistors

– A capacitor

• Constraints
– No analog input available

3/9/2015 Hardware fundamentals 23

Light sensor – basic principles

3/9/2015 Hardware fundamentals 24

GPIO output
at logical 0

GPIO as input

VDD = + 3.3V

VH > 2V

t1 = Time to reach logical 1 t1 depends on the circuit
time constant (RC)

By varying RC t1
increases or decreases

If the R value depends on
the amount of incident
light, then t1 depends on
the light intensity

Photoresistors: reduce
their actual resistance
when illuminated

Light sensor - schematics

• Logical 0 if
– VGPIO<0.7 V

• Logical 1 if
– VGPIO> 2 V

• Time to reach Logical
1 is roughly given by
RC (time to reach
63% of the final
voltage)

• 3.3*0.63 = 2,079 V

3/9/2015 Hardware fundamentals 25

+3.3V

1kΩ

2 - 20kΩ

1μF

GPIO
input

470Ω

Light sensor - design

• Time ranges

– RCmin = 2kΩ * 1μF
=2ms

– RCmax = 21kΩ * 1μF
=21ms

• May be tuned by

tuning the fixed
resistor

3/9/2015 Hardware fundamentals 26

+3.3V

1kΩ

2 - 20kΩ

1μF

GPIO
input

470Ω

Light sensor - algorithm

• Algorithm:

– Set GPIO as output

– Write 0

– Set GPIO as input

– Count time to get 1 in
input

3/9/2015 Hardware fundamentals 27

+3.3V

1kΩ

2 - 20kΩ

1μF

GPIO
input

470Ω

Light-sensing example

3/9/2015 Hardware fundamentals 28

import RPi.GPIO as GPIO, time, os
DEBUG = 1
GPIO.setmode(GPIO.BOARD)

def RCtime (RCpin):

 reading = 0
 GPIO.setup(RCpin, GPIO.OUT)
 GPIO.output(RCpin, GPIO.LOW)
 time.sleep(0.2)
 GPIO.setup(RCpin, GPIO.IN)
 # This takes about 1 millisecond per loop cycle
 start = time.time()

 while (GPIO.input(RCpin) == GPIO.LOW):
 reading += 1
 print (time.time()-start)*1000.0, "ms"
 return reading

GPIO.setup(15,GPIO.OUT)

while True:
 rc = RCtime(13)
 #print rc
 if rc < 1000:
 GPIO.output(15,GPIO.LOW)
 else:

 GPIO.output(15,GPIO.HIGH)

Turn on the LED if the
lighting level drops
over a given threshold

Project 3: push button

• Goal
– Light-up a red LED using one GPIO port when a button is

pressed

– Detect button pressing from Python

• Required Components
– The Raspberry Pi

– A red LED

– A NPN transistor (BC337-25 in our example)

– A couple of resistors

– A capacitor

– A push-button

3/9/2015 Hardware fundamentals 29

Push-button – basic principles

• De-bounce needed
– To avoid capturing

button bounces

– Based on the RC
circuit

– TTL 3V has Von at 2V

– In first instance we
can assume that the
time required to reach
such level is equal to
RC (time to reach 63%
of VDD)

3/9/2015 Hardware fundamentals 30

Push-button – design

• RC

– 4.7kΩ*1μF = 4.7ms

• The button can

bounce for up to
4.7ms

• Sufficient in typical

applications

3/9/2015 Hardware fundamentals 31

Button-sensing example

3/9/2015 Hardware fundamentals 32

import RPi.GPIO as GPIO, time, os

DEBUG = 1

#set-up pin numbering

GPIO.setmode(GPIO.BOARD)

def button_to_led (RCpin):
 # set-up pins

 GPIO.setup(RCpin, GPIO.IN)

 GPIO.setup(15,GPIO.OUT)

 # This takes about 1 millisecond per loop cycle

 while (True):
 if(GPIO.input(RCpin) == False):

 GPIO.output(15,GPIO.HIGH)

 else:

 GPIO.output(15,GPIO.LOW)

 return

button_to_led(11)

Turn on the LED when the
button is pressed (by
design the GPIO input will
be at 0)

Questions?
01PRD AMBIENT INTELLIGENCE: TECHNOLOGY AND DESIGN

Dario Bonino

bonino@ismb.it

