INTRODUCTION TO VBA
PROGRAMMING

LESSON3
dario.bonino@polito.it
c) (i)

UT No

Agenda

Language Basics
\square Comments
\square Variables

- Datatypes
\square Operators
- Constants
- Math Functions

Introduction to VBA programming - (c) 2009 Dario Bonino

Language Basics

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Comments

Every program must be

- Well structured
- Address each sub-problem in an easy to spot and specific program part \qquad
Well commented
- Allow others to easily understand and/or modify the program code \qquad
\square Comments
Begins with the character
-' this is a comment
- Can be on the same line of the instructions ■MsgBox("hey!") ‘ this is a comment

Introduction to VBA programming - (c) 2009 Dario Bonino

Comments

Private Sub CommandButton1_Click() \qquad
' ask the first number
x = InputBox("Insert the first number, please...")
' ask the second number
y = InputBox("Insert the first number, please...")
' compute the difference
result $=x-y$
' show the result
MsgBox ("The result of " \& x \& "-" \& y \& " is " \&
result)
End
End Sub \qquad
Introduction to VBA programming - (c) 2009 Dario Bonino

Variables

Containers for data

\qquad
\square (Wikipedia def.)
\square Variable names \qquad
\square Case-insensitive (upper and lower case letters are the same) \qquad

- Sample == sAmPLe == SAMPLE
\square Must begin with a letter
- Can contain letters, digits and the "_ " sign
\qquad
- Example: myVariable, Variable 1, HELLO_1 \qquad

Introduction to VBA programming - (c) 2009 Dario Bonino

Variables

\square Variable names (continued...)
\square Should be long and meaningful

- To easily remember what they are meant for \qquad
- To keep the program code understandable
- To allow easier documentation
\square Variable have a Type
\square Type indicates what kind of data is contained by the variable
\square May be implicit or explicit (better)

Introduction to VBA programming - (c) 2009 Dario Bonino

Datatypes

\square Visual Basic for Applications defines many datatypes \qquad
\square Numeric
\square Alphanumeric
\square Boolean

- Others...
\square Variable types are defined through the Dim-As \qquad expression
- Dim variable-name as Type \qquad
-Dim x As Integer
- Dim y As String
- Dim z As Boolean \qquad
Introduction to VBA programming - (c) 2009 Dario Bonino

Numeric Types

\square Designed for holding numeric values \qquad
\square Can be
\square Integers \qquad
Represent signed integer numbers on 16 bits

- Values range from - 32768 and +32767
- Numbers greater than 32767 or smaller than -32768 \qquad cannot be represented (overflow)

Long integers

- Represent signed integer numbers on 32 bits
- Values range from -2147483648 to 2147483647
- Overflow can occur but with much bigger numbers \qquad

Introduction to VBA programming - (c) 2009 Dario Bonino \qquad

Overflow

\square Try this program
Sub overflow()
Dim x As Integer ' set x as Integer (16bit) \qquad
$x=32767$ ' assign x the maximum Integer value
\qquad
$x=x+1$ ' add 1 to x (out of the range)
\qquad
MsgBox ("x is" \& x)
End Sub

Numeric Types

\square Can be (continued...)

\square Floating point (Single precision)

- Represent real numbers on 32 bits \qquad
- Numbers use a scientific notation Exponent - 8 bits

Sign - 1 bit
Significand - 23 bits
\qquad
\qquad
\qquad
\qquad
Hidden bit
\qquad

- Range from (+/-) $1 \cdot 10^{-45}$ to $3.4 \cdot 10^{38}$
\qquad

Numeric Types

Can be (continued...)
\square Floating point (Double precision)

- Represent real number on 64 bits \qquad
Significand 52 bits
- Exponent 11 bits
- Sign 1 bit \qquad
- Range from (+/-) $4.9 \cdot 10^{-324}$ to $1.7 \cdot 10^{308}$
\qquad
\qquad

Introduction to VBA programming - (c) 2009 Dario Bonino

Numeric Types

Integer vs Long vs Single vs Double
\square Floating point operations are slower than Integer operations
\square Floating point numbers require more memory than integers

- Integers cannot be used when real numbers are needed
\square In conclusion
\square Choose always the most suited datatype depending on the problem you have to solve

Introduction to VBA programming - (c) 2009 Dario Bonino

Boolean and String types

Boolean

\square Represent numbers that can only assume two values
\square E.g. Logical truth values
\square Allowed values: true, false
\square Strings (next lesson)

- Hold alphanumeric values
- E.g. "1,2 3, ... Hello World!"

Introduction to VBA programming - (c) 2009 Dario Bonino

Other types

\square Variant

\square Special, hybrid, type
\square Automatically assigned when the type of a variable is not specified
\square Can hold Integers, Real numbers, Strings, etc.

- Does not behave as if the variable was explicitly typed - Neither resembling a number nor a string
- Try to change the - to + in our simple calculator example

Introduction to VBA programming - (c) 2009 Dario Bonino

Working with numbers

\square Numerical expressions

amyar \because x y $-z^{*} 25$ 亿var7

Variable
Operator

Introduction to VBA programming - (c) 2009 Dario Bonino

Operators

\square VBA provides many operators for working with numbers
$\square+\rightarrow$ sum
$\square-\rightarrow$ subtraction
\square * \rightarrow multiplication
\square / \rightarrow division
$\square \backslash \rightarrow$ integer division
\square Mod \rightarrow remainder of a integer division
$\square \wedge \rightarrow$ power
$\square=\rightarrow$ assignment \qquad
Introduction to VBA programming - (c) 2009 Dario Bonino

Example

\square We want to write a program that, given a certain amount of seconds, computes the corresponding number of minutes and hours
\square nSeconds $=5275$
\square nHours $=$?
\rightarrow compute the integer division of the number of second by 3600
(seconds in 1 hour)

- nHours = nSeconds \ 3600
\square nMinutes $=$?
- \rightarrow compute the integer division of the hour remainder by 60 (seconds in 1 minute)
- nMinutes $=($ nSeconds Mod 3600) \60 \qquad

Introduction to VBA programming - (c) 2009 Dario Bonino

Example - solution

Sub operators()
Dim nSeconds As Integer
Dim nHours As Integer
Dim nMinutes As Integer
'get the number of seconds
nSeconds $=$ InputBox("Insert the amount of seconds to convert")
'compute the hours
nHours $=$ nSeconds $\backslash 3600$
'compute the minutes
nMinutes $=($ nSeconds Mod 3600$) \backslash 60$
'compute remaining seconds
nSeconds $=($ nSeconds Mod 3600) Mod 60
'show the result
MsgBox (nHours \& ":" \& nMinutes \& ":" \& nSeconds)
End Sub

Operator precedence rule

7 Whenever combined together in a numeric expression, operators have different precedence
\square In VBA operator precedence almost reflects the standard Mathematical precedence rule \qquad

- Parentheses
- Power
- Multiplication and division \qquad
- Integer division
\square Remainder
\square Sum and subtraction
\square Operators at the same level are executed side by side $\square A+B-C+D=(((A+B)-C)+D)$

Introduction to VBA programming - (c) 2009 Dario Bonino

Examples

```
r = 2+3*4+3^2 = 2+3*4+9 = 2+12+9 =
    23
r = (2+3)*4+3^2 = 5*4+3^2 = 5*4+9
= 20+9 = 29
r = 12 Mod 5 * 3 = 12 mod 15 = 12
\squarer = (12 Mod 5)*3 = 2*3 = 6
```


Mixed Type operations

\qquad
\square What happens when different numeric types are involved in a single numeric expression?

- Dim A as Integer \qquad
\square Dim B as Single
$\square \operatorname{Dim} C$ as Long \qquad
$\square Z=A * B+C \rightarrow$ which type will have Z ?

Mixed Type operations

\qquad

\square Anatomy of an expression

\qquad
\qquad
\qquad
\qquad
\qquad
Introduction to VBA programming - (c) 2009 Dario Bonino

Mixed Type operations

\qquad

Rules:

\qquad
\square The result of a computation between 2 values of a given Type has the same type \qquad

- Integer + Integer = Integer
- Long + Long = Long \qquad
- The result of a computation between 2 values of different Type...
- Depends... \qquad
\qquad

Mixed Type operations

\qquad

Anatomy of an expression \qquad

\qquad
\qquad
\qquad

Mixed Types

\qquad

The result of a computation between 2 values of \qquad different Type
\square On the right of the equal

- If two values have different types, the smaller one is
converted (promoted) temporarily to the larger type
\square On the left of the equal sign
- The result of the operation is casted to the declared type May generate errors
- A Long result may be larger than an Integer \qquad
- May introduce imprecision
- A single result looses the fractional part when it is casted to an integer \qquad
Introduction to VBA programming - (c) 2009 Dario Bonino

Example

\qquad

Sub mixedTypes()	Z1 = B
Dim A As Integer	MsgBox ("Z1 = " \& Z1)
Dim B As Single	$Z=A * B+C$
Dim C As Long	MsgBox $(" Z=" \& Z)$
Dim Z1 As Integer	Z1 =A * B + C
	MsgBox ("Z1 $=" \& Z 1)$
$A=10$	End Sub
$B=12.5$	
$C=1000000$	

Mixed types

\qquad

Errors can also happen if variables have the same type
\square Dim A as Integer, Dim B as Integer, Dim C as Long \qquad
A=25677
$\square B=20$

\square Both A and B are integers \rightarrow no conversion $\square A * B=\alpha$ (Integer) $>32767 \rightarrow$ overflow (even if C can contain the result)

Type Conversion

To avoid promotion and cast problems \qquad
\square Explicit conversion is recommended!!
\square Type Conversion can be achieved through \qquad conversion functions

- Truncates the fractional part \qquad
Introduction to VBA programming - (c) 2009 Dario Bonino

Type Conversion

\qquad
\square Conversion functions (continued...) \qquad
$\square \operatorname{Clnt}(\mathrm{A})$ - rounds to the nearest integer

\qquad
$\square \operatorname{CLng}(A)$ - converts to a Long (with the same semantics of Cint)
\qquad
\square CSng(A) - converts to Single
$\square \operatorname{CDbl}(\mathrm{A})$ - converts to Double \qquad
\square Implicit conversions use the Cxxx functions \square Clnt, CLng, CSng, CDbl \qquad

Introduction to VBA programming - (c) 2009 Dario Bonino

Exercise 1

\square Write a program that asks the user to enter 4 integer values (Integer or Long), and then calculates and prints their average (the result must have the \qquad fractional part).

Exercise 2

\square Write a program that asks for a temperature value \qquad (of an integer type) expressed in Fahrenheit degrees, and calculates and prints the corresponding values expressed in Celsius and Kelvin degrees (both with fractional part). [$\left.\mathrm{C}=5 / 9^{*}(\mathrm{~F}-32) ; \mathrm{K}=\mathrm{C}+273.15\right]$.

Introduction to VBA programming - (c) 2009 Dario Bonino

Math Functions

\qquad
\square VBA supports natively a set of common Math functions \qquad including
$\square \operatorname{Sin}(A)$ - sine of A (in radians)

- $\operatorname{Cos}(A)$ - cosine of A (in radians)
$\square \operatorname{Tan}(A)$ - tangent of A (in radians)
$\square A \operatorname{tn}(\mathrm{~A})$ - arc tangent of A (in radians)
- $\log (A)$ - natural logarithm of A
$\square \log 10(A)$ - common (base 10) logarithm of A
$\square \operatorname{Exp}(A)-e$ raised to A
$\square \mathrm{Abs}(\mathrm{A})$ - absolute value of A
- $\operatorname{Sqr}(A)$ - square root of A
$\square \operatorname{Sgn}(A)-\operatorname{sign}$ of $A:-1$ if negative, 0 if zero, +1 if positive

Introduction to VBA programming - (c) 2009 Dario Bonino

Constants

\square Sometimes it may be useful to defined fixed values
\square If they have to be used in several computation
\square If they represent intrinsically constant values - π - PI number

- G - Gravitation constant
- ...

Can either be
\square Numeric

- E.g. 1, 124, 32
\square Named
- Use the keyword Const

Introduction to VBA programming - (c) 2009 Dario Bonino

Constants

\square Examples

- $12 \% \rightarrow$ Integer numeric constant
- 253\& \rightarrow Long numeric constant
$\square 1.2345$! \rightarrow Single numeric constant
- 1.2345\# \rightarrow Double numeric constant
\square Const PI As Single $=3.14 .15 \rightarrow$ Named numeric constant
- No expressions allowed in this case!!
- Const PI As Single $=4$ * Atan $(1) \rightarrow$ WRONG!!

Introduction to VBA programming - (c) 2009 Dario Bonino

Exercise 3

An object moving with speed v near to light speed c ($2.99793 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$) shortens along the moving direction and gets heavier by a factor γ (less than
1). Write a program that asks for the length and the mass of a still object and calculates their variation at a speed requested from the user (in km / s).

\square Suggestion

$$
x^{\prime}=\not x \rightarrow \Delta x=x-x^{\prime}=x-\nsim x=x(1-\gamma)
$$

$$
m^{\prime}=\frac{m}{\gamma} \rightarrow \Delta m=m^{\prime}-m=m\left(\frac{1}{\gamma}-1\right)
$$

Introduction to VBA programming - (c) 2009 Dario Bonino

Exercise 4

Write a program to calculate the shortest distance between two points on the surface of the
Earth, given their geographic coordinates. The program requests the latitude and longitude
values (in degrees) of the two points, and displays the distance between them. To compute the
distance, use the following formula (remember that North and East coordinates are positive
dalues, South and West negative, and that trigonometric functions use radians):
$d=\arccos (p 1+p 2+p 3) \cdot r$

- $\quad \mathrm{Pl}=\cos (|\operatorname{lat}|)^{*} \cos (\mid \operatorname{lon} 1)^{*} \cos (\mid \operatorname{lat} 2)^{*} \cos (\mid \operatorname{lon} 2)$
- \quad 2 $2=\cos (\mid a t 1)^{*} \sin (\mid \operatorname{lon} 1)^{*} \cos (\mid a+2)^{*} \sin (\mid \operatorname{lon} 2)$
$p 3=\sin (l a t 1) * \sin (l a+2)$ \qquad
latl is the latitude in degrees of the first point
- lon 1 is the longitude in degrees of the first point
- lon2 is the longitude in degres of the second point
- r is the average Earth radius $(6372.795 \mathrm{~km}$ or 3441.034 NM , this approximation results in an error of

The inverse cosine can be calculated by the following formula:
$\arccos (x)=\arctan \left(\frac{-x}{\sqrt{1-x^{2}}}\right)+\frac{\pi}{2}$

Exercise 4

Calculate the distance between Turin International Airport (TRN, Italy, $45.02^{\circ} \mathrm{N}, 07.65^{\circ} \mathrm{E}$)
\square and
\square Los Angeles International Airport (LAX, USA: 33.94 N, $118.40^{\circ} \mathrm{W}$). [Answer: 9692.702 km or 5233.640 NM

